Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import tempfile | |
import os | |
import shutil | |
from logging_config import logger | |
from transcription_tool import TranscriptTool # Assuming TranscriptionTool is in `transcription_tool.py` | |
# smolagent transcription tool | |
transcript_tool = TranscriptTool() | |
def transcribe_url(url): | |
""" | |
Transcribes audio or video from a given URL. | |
Downloads the media from the URL, converts it to WAV format, | |
and then uses the TranscriptTool to perform the transcription in English | |
Args: | |
url (str): The URL of the audio or video file. | |
Returns: | |
str: The transcription of the audio/video in english, or an error message if | |
download or transcription fails. | |
""" | |
local_file_path = None | |
try: | |
if not url: | |
return "Error: Please provide a URL." # Removed the second empty string as the function only returns one value | |
logger.info(f"Attempting to download audio from URL: {url}") | |
temp_download_dir = "./temp_downloads" | |
os.makedirs(temp_download_dir, exist_ok=True) | |
# Use yt-dlp to download the best audio format and convert to wav | |
# -f bestaudio: selects the best audio format | |
# -x: extracts audio | |
# --audio-format wav: converts to wav format | |
# -o: specifies output template | |
output_template = os.path.join(temp_download_dir, "downloaded_audio.%(ext)s") | |
# --- Start Added Code --- | |
# Ensure any previous download is removed before starting a new one | |
logger.info(f"Checking for existing files matching 'downloaded_audio.*' in {temp_download_dir}") | |
for filename in os.listdir(temp_download_dir): | |
if filename.startswith("downloaded_audio."): | |
file_to_delete = os.path.join(temp_download_dir, filename) | |
try: | |
os.remove(file_to_delete) | |
logger.info(f"Removed existing file: {file_to_delete}") | |
except OSError as e: | |
logger.error(f"Error removing file {file_to_delete}: {e.strerror}") | |
# --- End Added Code --- | |
cmd = ["yt-dlp", "-f", "bestaudio", "-x", "--audio-format", "wav", "-o", output_template, url] | |
process = subprocess.run(cmd, check=True, capture_output=True, text=True) | |
logger.info("yt-dlp stdout:\n" + process.stdout) | |
logger.info("yt-dlp stderr:\n" + process.stderr) | |
# Find the downloaded file (yt-dlp might add .wav extension) | |
downloaded_files = [f for f in os.listdir(temp_download_dir) if f.startswith("downloaded_audio.")] | |
if not downloaded_files: | |
raise RuntimeError("yt-dlp failed to download or convert audio.") | |
local_file_path = os.path.join(temp_download_dir, downloaded_files[0]) | |
logger.info(f"Downloaded audio to temporary file: {local_file_path}") | |
print(f"Downloaded audio to temporary file: {local_file_path}") | |
# Perform transcription | |
transcription_result = transcript_tool.forward(local_file_path) | |
return transcription_result | |
except subprocess.CalledProcessError as e: | |
error_message = f"yt-dlp error: {e.stderr}" | |
logger.error(error_message) | |
return f"An error occurred during download: {error_message}" | |
except Exception as e: | |
error_message = f"An unexpected error occurred: {str(e)}" | |
logger.error(error_message) | |
return error_message | |
with gr.Blocks() as app: | |
gr.Markdown("# <center>gradio-transcript-mcp: Transcribe Audio/Video from URL</center>") | |
gr.Markdown( | |
""" | |
This application functions as an MCP server that transcribes audio or video from a URL using OpenAI's Whisper model. | |
It downloads the media, converts it to WAV, and performs the transcription. | |
### Connecting to the Hosted Server | |
To connect your MCP client that supports SSE to this hosted server, add a configuration entry similar to this: | |
```json | |
{ | |
"mcpServers": { | |
"gradio-transcript": { | |
"url": "https://bismay-gradio-transcript-mcp.hf.space/gradio_api/mcp/sse" | |
} | |
} | |
} | |
``` | |
For more details on setup and MCP usage, see the [README.md](README.md). | |
""" | |
) | |
url_input = gr.Textbox(label="Enter Audio/Video URL", placeholder="e.g., https://www.youtube.com/watch?v=dQw4w9WgXcQ") | |
transcribe_button = gr.Button("Transcribe") | |
gr.Markdown("Provide a URL to transcribe audio or YT video.") | |
transcription_output = gr.Textbox(label="Transcription", lines=10) | |
transcribe_button.click( | |
fn=transcribe_url, | |
inputs=[url_input], | |
outputs=[transcription_output] | |
) | |
if __name__ == "__main__": | |
app.launch(mcp_server=True) | |