File size: 6,731 Bytes
475e066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import cv2
import sys
import numpy as np

import torch
from torch.utils import data
from torch.utils.data import DataLoader
import torchvision.transforms as transforms

from PIL import Image
from collections import OrderedDict

sys.path.insert(1, './schp')
from utils.transforms import get_affine_transform
import networks
from utils.transforms import transform_logits

class PILImageDataset(data.Dataset):
    def __init__(self, img_lst=[], input_size=[512, 512], transform=None):
        self.img_lst = img_lst
        self.input_size = input_size
        self.transform = transform
        self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
        self.input_size = np.asarray(input_size)

    def __len__(self):
        return len(self.img_lst)

    def _box2cs(self, box):
        x, y, w, h = box[:4]
        return self._xywh2cs(x, y, w, h)

    def _xywh2cs(self, x, y, w, h):
        center = np.zeros((2), dtype=np.float32)
        center[0] = x + w * 0.5
        center[1] = y + h * 0.5
        if w > self.aspect_ratio * h:
            h = w * 1.0 / self.aspect_ratio
        elif w < self.aspect_ratio * h:
            w = h * self.aspect_ratio
        scale = np.array([w, h], dtype=np.float32)
        return center, scale

    def __getitem__(self, index):
        img = np.array(self.img_lst[index])[:,:,::-1]
        h, w, _ = img.shape

        # Get person center and scale
        person_center, s = self._box2cs([0, 0, w - 1, h - 1])
        r = 0
        trans = get_affine_transform(person_center, s, r, self.input_size)
        input = cv2.warpAffine(
            img,
            trans,
            (int(self.input_size[1]), int(self.input_size[0])),
            flags=cv2.INTER_LINEAR,
            borderMode=cv2.BORDER_CONSTANT,
            borderValue=(0, 0, 0))

        input = self.transform(input)
        meta = {
            'center': person_center,
            'height': h,
            'width': w,
            'scale': s,
            'rotation': r
        }

        return input, meta

PALLETE_DICT = {
    'Background': [], 
    'Face': [], 
    'Upper-clothes':[], 
    'Dress':[], 
    'Coat':[], 
    'Soaks':[],
    'Pants':[],
    'Jumpsuits':[],
    'Scarf':[],
    'Skirt':[], 
    'Arm':[],
    'Leg':[], 
    'Shoe':[]
    }

val_list = [[0],[1,4,13],[5],[6],[7],[8],[9],[10],[11],[12],[14,15],[16,17],[18,19]]
for c,j in enumerate(PALLETE_DICT.keys()):
  val = val_list[c]
  pallete = []
  for i in range(60):
    if len(val) == 1:
      if (i >= (val[0]*3)) & (i < ((val[0]+1)*3)):
        pallete.append(255)
      else:
        pallete.append(0)
    if len(val) == 2:
      if (i >= (val[0]*3)) & (i < ((val[0]+1)*3)) or (i >= (val[1]*3)) & (i < ((val[1]+1)*3)):
        pallete.append(255)
      else:
        pallete.append(0)
    if len(val) == 3:
      if (i >= (val[0]*3)) & (i < ((val[0]+1)*3)) or (i >= (val[1]*3)) & (i < ((val[1]+1)*3)) or (i >= (val[2]*3)) & (i < ((val[2]+1)*3)):
        pallete.append(255)
      else:
        pallete.append(0)

  PALLETE_DICT[j] = pallete


DATASET_SETTINGS = {
    'lip': {
        'input_size': [473, 473],
        'num_classes': 20,
        'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
                  'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
                  'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
    },
    'atr': {
        'input_size': [512, 512],
        'num_classes': 18,
        'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
                  'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
    },
    'pascal': {
        'input_size': [512, 512],
        'num_classes': 7,
        'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
    }
}



class SCHPParser:
    def __init__(self, checkpoint_path, dataset_settings):
        self.cp_path = checkpoint_path
        self.ops = []
        self.num_classes = dataset_settings['lip']['num_classes']
        self.input_size = dataset_settings['lip']['input_size']
        self.label = dataset_settings['lip']['label']
        self.pallete_dict = PALLETE_DICT


        self.img_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
        ])

        self.model = self.load_model()


    def load_model(self):
        model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None)
        state_dict = torch.load(self.cp_path)['state_dict']
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        model.load_state_dict(new_state_dict)
        model.cuda()
        model.eval()
        return model
    
    def create_dataloader(self, img_lst):
        dataset = PILImageDataset(img_lst, input_size=self.input_size, transform=self.img_transforms)
        # dataset = SimpleFolderDataset('inputs',input_size, transform)
        dataloader = DataLoader(dataset)
        return dataloader

    def get_image_masks(self, img_lst): 
        print("Evaluating total class number {} with {}".format(self.num_classes, self.label))
        dataloader = self.create_dataloader(img_lst)
        with torch.no_grad():
            for batch in dataloader:
                op_dict = {}
                image, meta = batch
                c = meta['center'].numpy()[0]
                s = meta['scale'].numpy()[0]
                w = meta['width'].numpy()[0]
                h = meta['height'].numpy()[0]

                output = self.model(image.cuda())
                upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True)
                upsample_output = upsample(output[0][-1][0].unsqueeze(0))
                upsample_output = upsample_output.squeeze()
                upsample_output = upsample_output.permute(1, 2, 0)  # CHW -> HWC

                logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size)
                parsing_result = np.argmax(logits_result, axis=2)
                output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
                for loc, key in  enumerate(self.pallete_dict.keys()):
                    output_img.putpalette(self.pallete_dict[key])
                    op_dict.update({
                        key: output_img.convert('L')
                    })
                self.ops.append(op_dict)
        return self.ops