Spaces:
Running
Running
File size: 3,872 Bytes
475e066 9c5e178 475e066 9c5e178 475e066 9c5e178 475e066 9c5e178 475e066 9c5e178 475e066 9c5e178 475e066 9c5e178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
title: ClothQuill - AI Clothing Inpainting
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.25.1
app_file: app.py
pinned: false
---
<div align="center">
# ClothQuill - AI Clothing Inpainting
[](https://huggingface.co/spaces/bismay/ClothQuill)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/release/python-380/)
π¨ An AI-powered tool for seamlessly editing and modifying clothing in images using state-of-the-art deep learning models.
[Demo](#demo) β’ [Features](#features) β’ [Installation](#installation) β’ [Usage](#usage) β’ [Examples](#examples) β’ [Technical Details](#technical-details)
</div>
## Demo
ClothQuill is available as a Hugging Face Space! Try it out here: [ClothQuill Demo](https://huggingface.co/spaces/bismay/ClothQuill)
## Features
- π― **Precise Clothing Detection**: Automatically identifies and segments different clothing items
- π¨ **Interactive Selection**: Choose specific clothing parts to modify
- π **Multiple Variations**: Generate multiple inpainting results for each prompt
- ποΈ **Adjustable Controls**: Fine-tune mask dilation for better blending
- πΌοΈ **High-Quality Output**: Maintains image quality with advanced upscaling
- π **Real-time Preview**: See segmentation masks and selected regions in real-time
## Installation
```bash
# Clone the repository
git clone https://huggingface.co/spaces/bismay/ClothQuill
cd ClothQuill
# Install dependencies
pip install -r requirements.txt
# Download required models (will be downloaded automatically on first run)
python download_models.py
```
## Usage
1. **Start the Application**
```bash
python app.py
```
2. **Using the Interface**
- Upload an image containing a person
- The app will automatically detect clothing regions
- Select which parts of the clothing you want to modify
- Adjust the mask dilation if needed
- Enter a prompt describing the desired clothing
- Click "Generate" to create multiple variations
3. **Advanced Options**
- Use the dilation slider to control the modification area
- Select multiple clothing parts for simultaneous editing
- Preview the segmentation mask before generating
## Examples
Here are some example prompts and their use cases:
- π§₯ **Outerwear**: "A stylish black leather jacket with silver zippers"
- π **Formal**: "A navy blue pinstripe suit with a white dress shirt"
- π **Casual**: "A comfortable gray hoodie with white drawstrings"
- π **Dresses**: "A flowing red summer dress with floral patterns"
- π **Pants**: "Dark blue distressed jeans with a vintage wash"
## Technical Details
ClothQuill combines multiple state-of-the-art models:
- **Segmentation**: [SegFormer](https://huggingface.co/mattmdjaga/segformer_b2_clothes) for precise clothing detection
- **Inpainting**: [Stable Diffusion 2.0](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting) for high-quality image generation
- **Upscaling**: [RealESRGAN](https://github.com/xinntao/Real-ESRGAN) for maintaining image quality
### Model Architecture
```
Input Image β SegFormer (Segmentation) β User Selection β
Mask Generation β Stable Diffusion (Inpainting) β
RealESRGAN (Upscaling) β Final Output
```
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Acknowledgments
- Thanks to the Hugging Face team for hosting the demo
- Stable Diffusion by Stability AI
- SegFormer implementation by mattmdjaga
- RealESRGAN by xinntao |