Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import re
|
4 |
-
import
|
5 |
import pdfminer
|
6 |
from pdfminer.high_level import extract_text
|
7 |
import pytesseract
|
@@ -28,7 +29,15 @@ def pdf_to_text(file):
|
|
28 |
text = "\n".join([pytesseract.image_to_string(img) for img in images])
|
29 |
return text
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def load_deeprank_model():
|
|
|
32 |
return load_model('deeprank_model_v2.h5')
|
33 |
|
34 |
def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label):
|
@@ -47,6 +56,9 @@ def predict_category(resumes_data, selected_category, max_sequence_length, model
|
|
47 |
return ranks
|
48 |
|
49 |
def main():
|
|
|
|
|
|
|
50 |
model = load_deeprank_model()
|
51 |
df = pd.read_csv('UpdatedResumeDataSet.csv')
|
52 |
df['cleaned'] = df['Resume'].apply(cleanResume)
|
@@ -56,24 +68,22 @@ def main():
|
|
56 |
text = df['cleaned'].values
|
57 |
tokenizer = Tokenizer()
|
58 |
tokenizer.fit_on_texts(text)
|
59 |
-
vocab_size = len(tokenizer.word_index) + 1
|
60 |
-
num_classes = len(label.classes_)
|
61 |
max_sequence_length = 500
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import re
|
5 |
+
import h5py
|
6 |
import pdfminer
|
7 |
from pdfminer.high_level import extract_text
|
8 |
import pytesseract
|
|
|
29 |
text = "\n".join([pytesseract.image_to_string(img) for img in images])
|
30 |
return text
|
31 |
|
32 |
+
def fix_h5_model():
|
33 |
+
with h5py.File("deeprank_model_v2.h5", "r+") as f:
|
34 |
+
if "model_config" in f.attrs:
|
35 |
+
model_config = f.attrs["model_config"]
|
36 |
+
updated_config = model_config.replace(b'"time_major": false', b"")
|
37 |
+
f.attrs.modify("model_config", updated_config)
|
38 |
+
|
39 |
def load_deeprank_model():
|
40 |
+
fix_h5_model()
|
41 |
return load_model('deeprank_model_v2.h5')
|
42 |
|
43 |
def predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label):
|
|
|
56 |
return ranks
|
57 |
|
58 |
def main():
|
59 |
+
st.title("Resume Ranking App")
|
60 |
+
st.write("Upload resumes and select a category to rank them based on their relevance.")
|
61 |
+
|
62 |
model = load_deeprank_model()
|
63 |
df = pd.read_csv('UpdatedResumeDataSet.csv')
|
64 |
df['cleaned'] = df['Resume'].apply(cleanResume)
|
|
|
68 |
text = df['cleaned'].values
|
69 |
tokenizer = Tokenizer()
|
70 |
tokenizer.fit_on_texts(text)
|
|
|
|
|
71 |
max_sequence_length = 500
|
72 |
|
73 |
+
uploaded_files = st.file_uploader("Upload Resumes (PDFs)", type=["pdf"], accept_multiple_files=True)
|
74 |
+
if uploaded_files:
|
75 |
+
resumes_data = []
|
76 |
+
for file in uploaded_files:
|
77 |
+
text = cleanResume(pdf_to_text(file))
|
78 |
+
resumes_data.append({'ResumeText': text, 'FileName': file.name})
|
79 |
+
|
80 |
+
selected_category = st.selectbox("Select a category to rank by", list(label.classes_))
|
81 |
+
if st.button("Rank Resumes"):
|
82 |
+
if resumes_data and selected_category:
|
83 |
+
ranks = predict_category(resumes_data, selected_category, max_sequence_length, model, tokenizer, label)
|
84 |
+
st.write(pd.DataFrame(ranks))
|
85 |
+
else:
|
86 |
+
st.error("Please upload valid resumes and select a valid category.")
|
87 |
|
88 |
if __name__ == '__main__':
|
89 |
main()
|