from typing import List, Optional import base64 import io import torch import numpy as np from fastapi import FastAPI, Body from fastapi.exceptions import HTTPException from pydantic import BaseModel from PIL import Image import gradio as gr from modules.api.models import * # noqa:F403 from modules.api import api from scripts import external_code, global_state from scripts.logging import logger from scripts.external_code import ControlNetUnit from scripts.supported_preprocessor import Preprocessor from annotator.openpose import draw_poses, decode_json_as_poses from annotator.openpose.animalpose import draw_animalposes def encode_to_base64(image): if isinstance(image, str): return image elif isinstance(image, Image.Image): return api.encode_pil_to_base64(image) elif isinstance(image, np.ndarray): return encode_np_to_base64(image) else: return "" def encode_np_to_base64(image): pil = Image.fromarray(image) return api.encode_pil_to_base64(pil) def encode_tensor_to_base64(obj: torch.Tensor) -> str: """Serialize the tensor data to base64 string.""" buffer = io.BytesIO() torch.save(obj, buffer) buffer.seek(0) # Rewind the buffer return base64.b64encode(buffer.getvalue()).decode("utf-8") def controlnet_api(_: gr.Blocks, app: FastAPI): @app.get("/controlnet/version") async def version(): return {"version": external_code.get_api_version()} @app.get("/controlnet/model_list") async def model_list(update: bool = True): up_to_date_model_list = external_code.get_models(update=update) logger.debug(up_to_date_model_list) return {"model_list": up_to_date_model_list} @app.get("/controlnet/module_list") async def module_list(alias_names: bool = False): _module_list = external_code.get_modules(alias_names) logger.debug(_module_list) return { "module_list": _module_list, "module_detail": external_code.get_modules_detail(alias_names), } @app.get("/controlnet/control_types") async def control_types(): def format_control_type( filtered_preprocessor_list, filtered_model_list, default_option, default_model, ): return { "module_list": filtered_preprocessor_list, "model_list": filtered_model_list, "default_option": default_option, "default_model": default_model, } return { "control_types": { control_type: format_control_type( *global_state.select_control_type(control_type) ) for control_type in Preprocessor.get_all_preprocessor_tags() } } @app.get("/controlnet/settings") async def settings(): max_models_num = external_code.get_max_models_num() return {"control_net_unit_count": max_models_num} @app.post("/controlnet/detect") async def detect( controlnet_module: str = Body("none", title="Controlnet Module"), controlnet_input_images: List[str] = Body([], title="Controlnet Input Images"), controlnet_processor_res: int = Body( -1, title="Controlnet Processor Resolution" ), controlnet_threshold_a: float = Body(-1, title="Controlnet Threshold a"), controlnet_threshold_b: float = Body(-1, title="Controlnet Threshold b"), low_vram: bool = Body(False, title="Low vram"), ): preprocessor = Preprocessor.get_preprocessor(controlnet_module) if preprocessor is None: raise HTTPException(status_code=422, detail="Module not available") if controlnet_module in ( "clip_vision", "revision_clipvision", "revision_ignore_prompt", "ip-adapter-auto", ): raise HTTPException(status_code=422, detail="Module not supported") if len(controlnet_input_images) == 0: raise HTTPException(status_code=422, detail="No image selected") logger.info( f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module." ) unit = ControlNetUnit( module=preprocessor.label, processor_res=controlnet_processor_res, threshold_a=controlnet_threshold_a, threshold_b=controlnet_threshold_b, ) unit.bound_check_params() results = [] poses = [] for input_image in controlnet_input_images: img = external_code.to_base64_nparray(input_image) class JsonAcceptor: def __init__(self) -> None: self.value = None def accept(self, json_dict: dict) -> None: self.value = json_dict json_acceptor = JsonAcceptor() detected_map = preprocessor.cached_call( img, resolution=unit.processor_res, slider_1=unit.threshold_a, slider_2=unit.threshold_b, json_pose_callback=json_acceptor.accept, low_vram=low_vram, ) results.append(detected_map) if "openpose" in controlnet_module: assert json_acceptor.value is not None poses.append(json_acceptor.value) res = {"info": "Success"} if preprocessor.returns_image: res["images"] = [encode_to_base64(r) for r in results] if poses: res["poses"] = poses else: res["tensor"] = [encode_tensor_to_base64(r) for r in results] return res class Person(BaseModel): pose_keypoints_2d: List[float] hand_right_keypoints_2d: Optional[List[float]] hand_left_keypoints_2d: Optional[List[float]] face_keypoints_2d: Optional[List[float]] class PoseData(BaseModel): people: List[Person] canvas_width: int canvas_height: int @app.post("/controlnet/render_openpose_json") async def render_openpose_json( pose_data: List[PoseData] = Body([], title="Pose json files to render.") ): if not pose_data: return {"info": "No pose data detected."} else: def draw(poses, animals, H, W): if poses: assert len(animals) == 0 return draw_poses(poses, H, W) else: return draw_animalposes(animals, H, W) return { "images": [ encode_to_base64(draw(*decode_json_as_poses(pose.dict()))) for pose in pose_data ], "info": "Success", } try: import modules.script_callbacks as script_callbacks script_callbacks.on_app_started(controlnet_api) except Exception: logger.warn("Unable to mount ControlNet API.")