import os import cv2 import numpy as np import torch from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image import safetensors from modules import devices from modules.shared import opts from modules.control.util import HWC3, resize_image from .zoedepth.models.zoedepth.zoedepth_v1 import ZoeDepth from .zoedepth.models.zoedepth_nk.zoedepth_nk_v1 import ZoeDepthNK from .zoedepth.utils.config import get_config class ZoeDetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path, model_type="zoedepth", filename=None, cache_dir=None): filename = filename or "ZoeD_M12_N.pt" if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir) if model_type == "zoedepth": model_cls = ZoeDepth elif model_type == "zoedepth_nk": model_cls = ZoeDepthNK else: raise ValueError(f"ZoeDepth unknown model type {model_type}") conf = get_config(model_type, "infer") model = model_cls.build_from_config(conf) # model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['model']) if model_path.lower().endswith('.safetensors'): model_dict = safetensors.torch.load_file(model_path, device='cpu') else: model_dict = torch.load(model_path, map_location=torch.device('cpu')) if hasattr(model_dict, 'model'): model_dict = model_dict['model'] model.load_state_dict(model_dict, strict=False) # timm compatibility issue for b in model.core.core.pretrained.model.blocks: b.drop_path = torch.nn.Identity() model.eval() return cls(model) def to(self, device): self.model.to(device) return self def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type=None, gamma_corrected=False): self.model.to(devices.device) device = next(iter(self.model.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) output_type = output_type or "pil" else: output_type = output_type or "np" input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 image_depth = input_image image_depth = torch.from_numpy(image_depth).float().to(device) image_depth = image_depth / 255.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = self.model.infer(image_depth) if opts.control_move_processor: self.model.to('cpu') depth = depth[0, 0].cpu().numpy() vmin = np.percentile(depth, 2) vmax = np.percentile(depth, 85) depth -= vmin depth /= vmax - vmin depth = 1.0 - depth if gamma_corrected: depth = np.power(depth, 2.2) depth_image = (depth * 255.0).clip(0, 255).astype(np.uint8) detected_map = depth_image detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, _C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map