import os import types import cv2 import numpy as np import torch import torchvision.transforms as transforms from einops import rearrange from huggingface_hub import hf_hub_download from PIL import Image from modules import devices from modules.shared import opts from modules.control.util import HWC3, resize_image from .nets.NNET import NNET # load model def load_checkpoint(fpath, model): ckpt = torch.load(fpath, map_location='cpu')['model'] load_dict = {} for k, v in ckpt.items(): if k.startswith('module.'): k_ = k.replace('module.', '') load_dict[k_] = v else: load_dict[k] = v model.load_state_dict(load_dict) return model class NormalBaeDetector: def __init__(self, model): self.model = model self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None): filename = filename or "scannet.pt" if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir) args = types.SimpleNamespace() args.mode = 'client' args.architecture = 'BN' args.pretrained = 'scannet' args.sampling_ratio = 0.4 args.importance_ratio = 0.7 model = NNET(args) model = load_checkpoint(model_path, model) model.eval() return cls(model) def to(self, device): self.model.to(device) return self def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): self.model.to(devices.device) device = next(iter(self.model.parameters())).device if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 image_normal = input_image image_normal = torch.from_numpy(image_normal).float().to(device) image_normal = image_normal / 255.0 image_normal = rearrange(image_normal, 'h w c -> 1 c h w') image_normal = self.norm(image_normal) normal = self.model(image_normal) normal = normal[0][-1][:, :3] # d = torch.sum(normal ** 2.0, dim=1, keepdim=True) ** 0.5 # d = torch.maximum(d, torch.ones_like(d) * 1e-5) # normal /= d normal = ((normal + 1) * 0.5).clip(0, 1) normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy() normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8) detected_map = normal_image detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, _C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": detected_map = Image.fromarray(detected_map) if opts.control_move_processor: self.model.to('cpu') return detected_map