import os import cv2 import numpy as np import torch from huggingface_hub import hf_hub_download from PIL import Image from modules import devices from modules.shared import opts from modules.control.util import HWC3, resize_image from .models.mbv2_mlsd_large import MobileV2_MLSD_Large from .utils import pred_lines class MLSDdetector: def __init__(self, model): self.model = model @classmethod def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None): if pretrained_model_or_path == "lllyasviel/ControlNet": filename = filename or "annotator/ckpts/mlsd_large_512_fp32.pth" else: filename = filename or "mlsd_large_512_fp32.pth" if os.path.isdir(pretrained_model_or_path): model_path = os.path.join(pretrained_model_or_path, filename) else: model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir) model = MobileV2_MLSD_Large() model.load_state_dict(torch.load(model_path), strict=True) model.eval() return cls(model) def to(self, device): self.model.to(device) return self def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs): self.model.to(devices.device) if not isinstance(input_image, np.ndarray): input_image = np.array(input_image, dtype=np.uint8) input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) assert input_image.ndim == 3 img = input_image img_output = np.zeros_like(img) try: lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) except Exception: pass detected_map = img_output[:, :, 0] detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, _C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": detected_map = Image.fromarray(detected_map) if opts.control_move_processor: self.model.to('cpu') return detected_map