from PIL import Image import numpy as np import torch from transformers import AutoImageProcessor, GLPNForDepthEstimation from modules import devices from modules.shared import opts class GLPNDetector: def __init__(self, model=None, processor=None): self.model = model self.processor = processor def __call__(self, input_image=None): from modules.control.processors import cache_dir if self.processor is None: self.processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti", cache_dir=cache_dir) if self.model is None: self.model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti", cache_dir=cache_dir) self.model.to(devices.device) with devices.inference_context(): inputs = self.processor(images=input_image, return_tensors="pt") inputs.to(devices.device) outputs = self.model(**inputs) predicted_depth = outputs.predicted_depth prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=input_image.size[::-1], mode="bicubic", align_corners=False, ) output = prediction.squeeze().cpu().numpy() formatted = 255 - (output * 255 / np.max(output)).astype("uint8") if opts.control_move_processor: self.model.to('cpu') depth = Image.fromarray(formatted) depth = depth.convert('RGB') return depth