# Openpose # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose # 2nd Edited by https://github.com/Hzzone/pytorch-openpose # 3rd Edited by ControlNet # 4th Edited by ControlNet (added face and correct hands) import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import cv2 import numpy as np from PIL import Image from modules.control.util import HWC3, resize_image from .draw import draw_bodypose, draw_handpose, draw_facepose checked_ok = False def check_dependencies(): global checked_ok # pylint: disable=global-statement from installer import installed, install, log packages = [('openmim', 'openmim'), ('mmengine', 'mmengine'), ('mmcv', 'mmcv'), ('mmpose', 'mmpose'), ('mmdet', 'mmdet')] for pkg in packages: if not installed(pkg[1], reload=True, quiet=True): install(pkg[0], pkg[1], ignore=False) try: import mmcv # pylint: disable=unused-import checked_ok = True return True except Exception as e: log.error(f'DWPose: {e}') return False def draw_pose(pose, H, W): bodies = pose['bodies'] faces = pose['faces'] hands = pose['hands'] candidate = bodies['candidate'] subset = bodies['subset'] canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) canvas = draw_bodypose(canvas, candidate, subset) canvas = draw_handpose(canvas, hands) canvas = draw_facepose(canvas, faces) return canvas class DWposeDetector: def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu"): if not checked_ok: if not check_dependencies(): return from .wholebody import Wholebody self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device) def to(self, device): self.pose_estimation.to(device) return self def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", min_confidence=0.3, **kwargs): input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR) input_image = HWC3(input_image) input_image = resize_image(input_image, detect_resolution) H, W, _C = input_image.shape candidate, subset = self.pose_estimation(input_image) if candidate is None: return Image.fromarray(input_image) nums, _keys, locs = candidate.shape candidate[..., 0] /= float(W) candidate[..., 1] /= float(H) body = candidate[:,:18].copy() body = body.reshape(nums*18, locs) score = subset[:,:18] for i in range(len(score)): for j in range(len(score[i])): if score[i][j] > min_confidence: score[i][j] = int(18*i+j) else: score[i][j] = -1 un_visible = subset < min_confidence candidate[un_visible] = -1 _foot = candidate[:,18:24] faces = candidate[:,24:92] hands = candidate[:,92:113] hands = np.vstack([hands, candidate[:,113:]]) bodies = dict(candidate=body, subset=score) pose = dict(bodies=bodies, hands=hands, faces=faces) detected_map = draw_pose(pose, H, W) detected_map = HWC3(detected_map) img = resize_image(input_image, image_resolution) H, W, _C = img.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) if output_type == "pil": detected_map = Image.fromarray(detected_map) return detected_map