from typing import Dict, List, Tuple import numpy as np import onnxruntime as ort from PIL import Image from PIL.Image import Image as PILImage class BaseSession: def __init__( self, inner_session: ort.InferenceSession, mean: Tuple[float, float, float], std: Tuple[float, float, float], size: Tuple[int, int], ): self.inner_session = inner_session self.mean = mean self.std = std self.size = size def normalize(self, img: PILImage) -> Dict[str, np.ndarray]: im = img.convert("RGB").resize(self.size, Image.LANCZOS) im_ary = np.array(im) im_ary = im_ary / np.max(im_ary) tmpImg = np.zeros((im_ary.shape[0], im_ary.shape[1], 3)) tmpImg[:, :, 0] = (im_ary[:, :, 0] - self.mean[0]) / self.std[0] tmpImg[:, :, 1] = (im_ary[:, :, 1] - self.mean[1]) / self.std[1] tmpImg[:, :, 2] = (im_ary[:, :, 2] - self.mean[2]) / self.std[2] tmpImg = tmpImg.transpose((2, 0, 1)) model_input_name = self.inner_session.get_inputs()[0].name return {model_input_name: np.expand_dims(tmpImg, 0).astype(np.float32)} def predict(self, _: PILImage) -> List[PILImage]: raise NotImplementedError