import numpy as np from .cf_laplacian import cf_laplacian from .cg import cg from .ichol import ichol from .util import sanity_check_image, trimap_split def estimate_alpha_cf( # pylint: disable=dangerous-default-value image, trimap, preconditioner=None, laplacian_kwargs=None, cg_kwargs=None ): """ Estimate alpha from an input image and an input trimap using Closed-Form Alpha Matting as proposed by :cite:`levin2007closed`. Parameters ---------- image: numpy.ndarray Image with shape :math:`h \\times w \\times d` for which the alpha matte should be estimated trimap: numpy.ndarray Trimap with shape :math:`h \\times w` of the image preconditioner: function or scipy.sparse.linalg.LinearOperator Function or sparse matrix that applies the preconditioner to a vector (default: ichol) laplacian_kwargs: dictionary Arguments passed to the :code:`cf_laplacian` function cg_kwargs: dictionary Arguments passed to the :code:`cg` solver is_known: numpy.ndarray Binary mask of pixels for which to compute the laplacian matrix. Providing this parameter might improve performance if few pixels are unknown. Returns ------- alpha: numpy.ndarray Estimated alpha matte Example ------- >>> from pymatting import * >>> image = load_image("data/lemur/lemur.png", "RGB") >>> trimap = load_image("data/lemur/lemur_trimap.png", "GRAY") >>> alpha = estimate_alpha_cf( ... image, ... trimap, ... laplacian_kwargs={"epsilon": 1e-6}, ... cg_kwargs={"maxiter":2000}) """ if cg_kwargs is None: cg_kwargs = {} if laplacian_kwargs is None: laplacian_kwargs = {} if preconditioner is None: preconditioner = ichol sanity_check_image(image) is_fg, _, is_known, is_unknown = trimap_split(trimap) L = cf_laplacian(image, **laplacian_kwargs, is_known=is_known) # Split Laplacian matrix L into # # [L_U R ] # [R^T L_K] # # and then solve L_U x_U = -R is_fg_K for x where K (is_known) corresponds to # fixed pixels and U (is_unknown) corresponds to unknown pixels. For reference, see # Grady, Leo, et al. "Random walks for interactive alpha-matting." Proceedings of VIIP. Vol. 2005. 2005. L_U = L[is_unknown, :][:, is_unknown] R = L[is_unknown, :][:, is_known] m = is_fg[is_known] x = trimap.copy().ravel() x[is_unknown] = cg(L_U, -R.dot(m), M=preconditioner(L_U), **cg_kwargs) alpha = np.clip(x, 0, 1).reshape(trimap.shape) return alpha