""" Simplex noise implementation by Alex Dodge, 2023 References: Simplex noise demystified, Stefan Gustavson (2005) http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf """ import itertools from typing import Optional import numpy as np # fmt: off PERMUTATION_TABLE_ARRAY = np.array([ 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 ], dtype=np.int32) # fmt: on # Empirically determined scaling factor for different numbers of dimensions SCALE = { 2: 50, 3: 39, 4: 32, 5: 28, 6: 26, # It looks terrible at this many dimensions anyway } class SimplexNoise: def __init__(self, dimensions: int, seed: Optional[int], r2: float = 0.5): if dimensions <= 0: raise ValueError if dimensions == 1: raise RuntimeError("1D Simplex noise is not implemented here.") if dimensions > 6: raise RuntimeError("7D+ Simplex noise is not implemented here.") self.dimensions = dimensions self.r2 = r2 self.F = (np.sqrt(self.dimensions + 1) - 1) / self.dimensions self.G = (1 - 1 / np.sqrt(self.dimensions + 1)) / self.dimensions """ For 2D noise, we pick 16 gradients evenly distributed around the unit circle. For 3D and above, we pick gradients pointing at the midpoints of the edges of a hypercube centered on the origin """ if self.dimensions == 2: n_gradients = 16 self.gradients = np.array( [ ( np.cos(2 * np.pi * i / n_gradients), np.sin(2 * np.pi * i / n_gradients), ) for i in range(n_gradients) ] ) else: n_gradients = self.dimensions * 2 ** (self.dimensions - 1) self.gradients = np.zeros((n_gradients, self.dimensions)) for zero_dim in range(self.dimensions): for i, vec in enumerate( itertools.product([-1, 1], repeat=self.dimensions - 1) ): idx = zero_dim * 2 ** (self.dimensions - 1) + i self.gradients[idx, :zero_dim] = vec[:zero_dim] self.gradients[idx, zero_dim + 1 :] = vec[zero_dim:] if seed is None: # Use the canonical table from the reference implementation self.permutation_table = PERMUTATION_TABLE_ARRAY else: np.random.seed(seed) self.permutation_table = np.arange(self.gradients.shape[0] * 16) np.random.shuffle(self.permutation_table) def evaluate(self, points: np.ndarray): n_points = points.shape[0] assert points.shape == (n_points, self.dimensions) skewed_points = points + (points.sum(axis=1) * self.F).reshape((n_points, 1)) skewed_bases, skewed_points_remainder = np.divmod(skewed_points, 1) skewed_simplex_verts = np.full( (n_points, self.dimensions + 1, self.dimensions), fill_value=skewed_bases.reshape((n_points, 1, -1)), dtype="int32", ) skewed_simplex_verts[:, self.dimensions, :] += 1 for i in range(1, self.dimensions): largest_dimension = np.argmax(skewed_points_remainder, axis=1) for o in range(self.dimensions): skewed_simplex_verts[ (largest_dimension == o), i : self.dimensions, o ] += 1 if i != self.dimensions - 1: skewed_points_remainder[(largest_dimension == o), o] = -1 gradient_index = np.zeros(skewed_simplex_verts.shape[:2], dtype="int32") for i in range(skewed_simplex_verts.shape[2]): gradient_index = ( gradient_index + skewed_simplex_verts[:, :, i] ) % self.permutation_table.size gradient_index = self.permutation_table[gradient_index] gradients = self.gradients[gradient_index % self.gradients.shape[0]] simplex_verts = ( skewed_simplex_verts - skewed_simplex_verts.sum(axis=2).reshape((n_points, -1, 1)) * self.G ) displacement = np.power( points.reshape((n_points, 1, -1)) - simplex_verts, 2 ).sum(axis=2) dot_gradient = np.sum( (points.reshape((n_points, 1, -1)) - simplex_verts) * gradients, axis=2 ) contributions = ( np.power(np.maximum(0, self.r2 - displacement), 4) * dot_gradient ) return np.sum(contributions, axis=1) * SCALE[self.dimensions] + 0.5