import torch import networks from modules import patches, shared class LoraPatches: def __init__(self): self.active = False self.Linear_forward = None self.Linear_load_state_dict = None self.Conv2d_forward = None self.Conv2d_load_state_dict = None self.GroupNorm_forward = None self.GroupNorm_load_state_dict = None self.LayerNorm_forward = None self.LayerNorm_load_state_dict = None self.MultiheadAttention_forward = None self.MultiheadAttention_load_state_dict = None def apply(self): if self.active or shared.opts.lora_force_diffusers: return self.Linear_forward = patches.patch(__name__, torch.nn.Linear, 'forward', networks.network_Linear_forward) self.Linear_load_state_dict = patches.patch(__name__, torch.nn.Linear, '_load_from_state_dict', networks.network_Linear_load_state_dict) self.Conv2d_forward = patches.patch(__name__, torch.nn.Conv2d, 'forward', networks.network_Conv2d_forward) self.Conv2d_load_state_dict = patches.patch(__name__, torch.nn.Conv2d, '_load_from_state_dict', networks.network_Conv2d_load_state_dict) self.GroupNorm_forward = patches.patch(__name__, torch.nn.GroupNorm, 'forward', networks.network_GroupNorm_forward) self.GroupNorm_load_state_dict = patches.patch(__name__, torch.nn.GroupNorm, '_load_from_state_dict', networks.network_GroupNorm_load_state_dict) self.LayerNorm_forward = patches.patch(__name__, torch.nn.LayerNorm, 'forward', networks.network_LayerNorm_forward) self.LayerNorm_load_state_dict = patches.patch(__name__, torch.nn.LayerNorm, '_load_from_state_dict', networks.network_LayerNorm_load_state_dict) self.MultiheadAttention_forward = patches.patch(__name__, torch.nn.MultiheadAttention, 'forward', networks.network_MultiheadAttention_forward) self.MultiheadAttention_load_state_dict = patches.patch(__name__, torch.nn.MultiheadAttention, '_load_from_state_dict', networks.network_MultiheadAttention_load_state_dict) networks.timer['load'] = 0 networks.timer['apply'] = 0 networks.timer['restore'] = 0 self.active = True def undo(self): if not self.active or shared.opts.lora_force_diffusers: return self.Linear_forward = patches.undo(__name__, torch.nn.Linear, 'forward') # pylint: disable=E1128 self.Linear_load_state_dict = patches.undo(__name__, torch.nn.Linear, '_load_from_state_dict') # pylint: disable=E1128 self.Conv2d_forward = patches.undo(__name__, torch.nn.Conv2d, 'forward') # pylint: disable=E1128 self.Conv2d_load_state_dict = patches.undo(__name__, torch.nn.Conv2d, '_load_from_state_dict') # pylint: disable=E1128 self.GroupNorm_forward = patches.undo(__name__, torch.nn.GroupNorm, 'forward') # pylint: disable=E1128 self.GroupNorm_load_state_dict = patches.undo(__name__, torch.nn.GroupNorm, '_load_from_state_dict') # pylint: disable=E1128 self.LayerNorm_forward = patches.undo(__name__, torch.nn.LayerNorm, 'forward') # pylint: disable=E1128 self.LayerNorm_load_state_dict = patches.undo(__name__, torch.nn.LayerNorm, '_load_from_state_dict') # pylint: disable=E1128 self.MultiheadAttention_forward = patches.undo(__name__, torch.nn.MultiheadAttention, 'forward') # pylint: disable=E1128 self.MultiheadAttention_load_state_dict = patches.undo(__name__, torch.nn.MultiheadAttention, '_load_from_state_dict') # pylint: disable=E1128 patches.originals.pop(__name__, None) self.active = False