test / scripts /demofusion.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import random
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import gradio as gr
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import is_accelerate_available, is_accelerate_version
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from modules import scripts, processing, shared, sd_models, devices
### Class definition
"""
Credits: https://github.com/PRIS-CV/DemoFusion
Source: https://github.com/PRIS-CV/DemoFusion/blob/main/pipeline_demofusion_sdxl.py
"""
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
x_coord = torch.arange(kernel_size)
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
gaussian_1d = gaussian_1d / gaussian_1d.sum()
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
return kernel
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
channels = latents.shape[1]
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
return blurred_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class DemoFusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin):
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
text_encoder_2: CLIPTextModelWithProjection,
tokenizer: CLIPTokenizer,
tokenizer_2: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
force_zeros_for_empty_prompt: bool = True,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=scheduler,
)
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = self.unet.config.sample_size
self.watermark = None
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
self.vae.disable_tiling()
def encode_prompt(
self,
prompt: str,
prompt_2: Optional[str] = None,
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
negative_prompt_2: Optional[str] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale # pylint: disable=attribute-defined-outside-init
# dynamically adjust the LoRA scale
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
# textual inversion: procecss multi-vector tokens if necessary
prompt_embeds_list = []
prompts = [prompt, prompt_2]
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, tokenizer)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
shared.log.warning(f"The following part of your input was truncated because CLIP can only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}")
prompt_embeds = text_encoder(
text_input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
# get unconditional embeddings for classifier free guidance
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt # pylint: disable=no-member
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
elif do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt_2 = negative_prompt_2 or negative_prompt
uncond_tokens: List[str]
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt, negative_prompt_2]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = [negative_prompt, negative_prompt_2]
negative_prompt_embeds_list = []
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
if isinstance(self, TextualInversionLoaderMixin):
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
negative_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
negative_prompt_embeds_list.append(negative_prompt_embeds)
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
if do_classifier_free_guidance:
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
num_images_per_prompt=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
)
# DemoFusion specific checks
if max(height, width) % 1024 != 0:
shared.log.error('DemoFusion: resolution={width}x{height} long side must be divisible by 1024')
return None
if num_images_per_prompt != 1:
shared.log.warning('DemoFusion: number of images per prompt is not support and will be ignored')
num_images_per_prompt = 1
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
add_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False):
# Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113)
# if panorama's height/width < window_size, num_blocks of height/width should return 1
height //= self.vae_scale_factor
width //= self.vae_scale_factor
num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1
num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * stride)
h_end = h_start + window_size
w_start = int((i % num_blocks_width) * stride)
w_end = w_start + window_size
if h_end > height:
h_start = int(h_start + height - h_end)
h_end = int(height)
if w_end > width:
w_start = int(w_start + width - w_end)
w_end = int(width)
if h_start < 0:
h_end = int(h_end - h_start)
h_start = 0
if w_start < 0:
w_end = int(w_end - w_start)
w_start = 0
if random_jitter:
jitter_range = (window_size - stride) // 4
w_jitter = 0
h_jitter = 0
if (w_start != 0) and (w_end != width):
w_jitter = random.randint(-jitter_range, jitter_range)
elif (w_start == 0) and (w_end != width):
w_jitter = random.randint(-jitter_range, 0)
elif (w_start != 0) and (w_end == width):
w_jitter = random.randint(0, jitter_range)
if (h_start != 0) and (h_end != height):
h_jitter = random.randint(-jitter_range, jitter_range)
elif (h_start == 0) and (h_end != height):
h_jitter = random.randint(-jitter_range, 0)
elif (h_start != 0) and (h_end == height):
h_jitter = random.randint(0, jitter_range)
h_start += (h_jitter + jitter_range)
h_end += (h_jitter + jitter_range)
w_start += (w_jitter + jitter_range)
w_end += (w_jitter + jitter_range)
views.append((h_start, h_end, w_start, w_end))
return views
def tiled_decode(self, latents, current_height, current_width):
core_size = self.unet.config.sample_size // 4
core_stride = core_size
pad_size = self.unet.config.sample_size // 4 * 3
decoder_view_batch_size = 1
if self.lowvram:
core_stride = core_size // 2
pad_size = core_size
views = self.get_views(current_height, current_width, stride=core_stride, window_size=core_size)
views_batch = [views[i : i + decoder_view_batch_size] for i in range(0, len(views), decoder_view_batch_size)]
latents_ = F.pad(latents, (pad_size, pad_size, pad_size, pad_size), 'constant', 0)
image = torch.zeros(latents.size(0), 3, current_height, current_width).to(latents.device)
count = torch.zeros_like(image).to(latents.device)
# get the latents corresponding to the current view coordinates
with self.progress_bar(total=len(views_batch)) as progress_bar:
for j, batch_view in enumerate(views_batch):
len(batch_view)
latents_for_view = torch.cat(
[
latents_[:, :, h_start:h_end+pad_size*2, w_start:w_end+pad_size*2]
for h_start, h_end, w_start, w_end in batch_view
]
).to(self.vae.device)
image_patch = self.vae.decode(latents_for_view / self.vae.config.scaling_factor, return_dict=False)[0]
h_start, h_end, w_start, w_end = views[j]
h_start, h_end, w_start, w_end = h_start * self.vae_scale_factor, h_end * self.vae_scale_factor, w_start * self.vae_scale_factor, w_end * self.vae_scale_factor
p_h_start, p_h_end, p_w_start, p_w_end = pad_size * self.vae_scale_factor, image_patch.size(2) - pad_size * self.vae_scale_factor, pad_size * self.vae_scale_factor, image_patch.size(3) - pad_size * self.vae_scale_factor
image[:, :, h_start:h_end, w_start:w_end] += image_patch[:, :, p_h_start:p_h_end, p_w_start:p_w_end].to(latents.device)
count[:, :, h_start:h_end, w_start:w_end] += 1
progress_bar.update()
image = image / count
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = False,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
################### DemoFusion specific parameters ####################
view_batch_size: int = 16,
multi_decoder: bool = True,
stride: Optional[int] = 64,
cosine_scale_1: Optional[float] = 3.,
cosine_scale_2: Optional[float] = 1.,
cosine_scale_3: Optional[float] = 1.,
sigma: Optional[float] = 1.0,
lowvram: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
Anything below 512 pixels won't work well for
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
and checkpoints that are not specifically fine-tuned on low resolutions.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
guidance_scale (`float`, *optional*, defaults to 5.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
guidance_rescale (`float`, *optional*, defaults to 0.7):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `ฯ†` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
To negatively condition the generation process based on a target image resolution. It should be as same
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
################### DemoFusion specific parameters ####################
view_batch_size (`int`, defaults to 16):
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher
efficiency but comes with increased GPU memory requirements.
multi_decoder (`bool`, defaults to True):
Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072,
a tiled decoder becomes necessary.
stride (`int`, defaults to 64):
The stride of moving local patches. A smaller stride is better for alleviating seam issues,
but it also introduces additional computational overhead and inference time.
cosine_scale_1 (`float`, defaults to 3):
Control the strength of skip-residual. For specific impacts, please refer to Appendix C
in the DemoFusion paper.
cosine_scale_2 (`float`, defaults to 1):
Control the strength of dilated sampling. For specific impacts, please refer to Appendix C
in the DemoFusion paper.
cosine_scale_3 (`float`, defaults to 1):
Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C
in the DemoFusion paper.
sigma (`float`, defaults to 1):
The standard value of the gaussian filter.
show_image (`bool`, defaults to False):
Determine whether to show intermediate results during generation.
lowvram (`bool`, defaults to False):
Try to fit in 8 Gb of VRAM, with xformers installed.
Examples:
Returns:
a `list` with the generated images at each phase.
"""
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
x1_size = self.default_sample_size * self.vae_scale_factor
height_scale = height / x1_size
width_scale = width / x1_size
scale_num = int(max(height_scale, width_scale))
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale)
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
num_images_per_prompt,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
self.lowvram = lowvram # pylint: disable=attribute-defined-outside-init
if self.lowvram:
self.vae.cpu()
self.unet.cpu()
self.text_encoder.to(device)
self.text_encoder_2.to(device)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height // scale_num,
width // scale_num,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
del negative_prompt_embeds, negative_pooled_prompt_embeds, negative_add_time_ids
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps # pylint: disable=no-member
- (denoising_end * self.scheduler.config.num_train_timesteps) # pylint: disable=no-member
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
output_images = []
############################################################### Phase 1 #################################################################
if self.lowvram:
self.text_encoder.cpu()
self.text_encoder_2.cpu()
shared.log.debug('DemoFusion: phase=1 denoising')
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.lowvram:
self.vae.cpu()
self.unet.to(device)
latents_for_view = latents
# expand the latents if we are doing classifier free guidance
latent_model_input = (
latents.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
anchor_mean = latents.mean()
anchor_std = latents.std()
del latents_for_view, latent_model_input, noise_pred, noise_pred_text, noise_pred_uncond
if self.lowvram:
latents = latents.cpu()
torch.cuda.empty_cache()
if output_type != "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if self.lowvram:
needs_upcasting = False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
self.unet.cpu()
self.vae.to(device)
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
shared.log.debug('DemoFusion: phase=1 decoding')
if self.lowvram and multi_decoder:
current_width_height = self.unet.config.sample_size * self.vae_scale_factor
image = self.tiled_decode(latents, current_width_height, current_width_height)
else:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
image = self.image_processor.postprocess(image, output_type=output_type)
output_images.append(image[0])
else:
output_images.append(latents)
####################################################### Phase 2+ #####################################################
for current_scale_num in range(2, scale_num + 1):
if self.lowvram:
latents = latents.to(device)
self.unet.to(device)
torch.cuda.empty_cache()
shared.log.debug(f'DemoFusion: phase={current_scale_num} denoising')
current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num
if height > width:
current_width = int(current_width * aspect_ratio)
else:
current_height = int(current_height * aspect_ratio)
latents = F.interpolate(latents.to(device), size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), mode='bicubic')
noise_latents = []
noise = torch.randn_like(latents)
for timestep in timesteps:
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0))
noise_latents.append(noise_latent)
latents = noise_latents[0]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
count = torch.zeros_like(latents)
value = torch.zeros_like(latents)
cosine_factor = 0.5 * (1 + torch.cos(torch.pi * (self.scheduler.config.num_train_timesteps - t) / self.scheduler.config.num_train_timesteps)).cpu() # pylint: disable=no-member
c1 = cosine_factor ** cosine_scale_1
latents = latents * (1 - c1) + noise_latents[i] * c1
############################################# MultiDiffusion #############################################
views = self.get_views(current_height, current_width, stride=stride, window_size=self.unet.config.sample_size, random_jitter=True)
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
jitter_range = (self.unet.config.sample_size - stride) // 4
latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), 'constant', 0)
count_local = torch.zeros_like(latents_)
value_local = torch.zeros_like(latents_)
for _j, batch_view in enumerate(views_batch):
vb_size = len(batch_view)
# get the latents corresponding to the current view coordinates
latents_for_view = torch.cat(
[
latents_[:, :, h_start:h_end, w_start:w_end]
for h_start, h_end, w_start, w_end in batch_view
]
)
# expand the latents if we are doing classifier free guidance
latent_model_input = latents_for_view
latent_model_input = (
latent_model_input.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latent_model_input
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
add_time_ids_input = []
for h_start, _h_end, w_start, _w_end in batch_view:
add_time_ids_ = add_time_ids.clone()
add_time_ids_[:, 2] = h_start * self.vae_scale_factor
add_time_ids_[:, 3] = w_start * self.vae_scale_factor
add_time_ids_input.append(add_time_ids_)
add_time_ids_input = torch.cat(add_time_ids_input)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
self.scheduler._init_step_index(t) # pylint: disable=no-member
latents_denoised_batch = self.scheduler.step(
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
# extract value from batch
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
latents_denoised_batch.chunk(vb_size), batch_view
):
value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
count_local[:, :, h_start:h_end, w_start:w_end] += 1
value_local = value_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
count_local = count_local[: ,:, jitter_range: jitter_range + current_height // self.vae_scale_factor, jitter_range: jitter_range + current_width // self.vae_scale_factor]
c2 = cosine_factor ** cosine_scale_2
value += value_local / count_local * (1 - c2)
count += torch.ones_like(value_local) * (1 - c2)
############################################# Dilated Sampling #############################################
views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)]
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)]
h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num
w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), 'constant', 0)
count_global = torch.zeros_like(latents_)
value_global = torch.zeros_like(latents_)
c3 = 0.99 * cosine_factor ** cosine_scale_3 + 1e-2
std_, mean_ = latents_.std(), latents_.mean()
latents_gaussian = gaussian_filter(latents_, kernel_size=(2*current_scale_num-1), sigma=sigma*c3)
latents_gaussian = (latents_gaussian - latents_gaussian.mean()) / latents_gaussian.std() * std_ + mean_
for _j, batch_view in enumerate(views_batch):
latents_for_view = torch.cat(
[
latents_[:, :, h::current_scale_num, w::current_scale_num]
for h, w in batch_view
]
)
latents_for_view_gaussian = torch.cat(
[
latents_gaussian[:, :, h::current_scale_num, w::current_scale_num]
for h, w in batch_view
]
)
vb_size = latents_for_view.size(0)
# expand the latents if we are doing classifier free guidance
latent_model_input = latents_for_view_gaussian
latent_model_input = (
latent_model_input.repeat_interleave(2, dim=0)
if do_classifier_free_guidance
else latent_model_input
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size)
add_time_ids_input = torch.cat([add_time_ids] * vb_size)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_input,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2]
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
self.scheduler._init_step_index(t) # pylint: disable=no-member
latents_denoised_batch = self.scheduler.step(
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False)[0]
# extract value from batch
for latents_view_denoised, (h, w) in zip(
latents_denoised_batch.chunk(vb_size), batch_view
):
value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised
count_global[:, :, h::current_scale_num, w::current_scale_num] += 1
c2 = cosine_factor ** cosine_scale_2
value_global = value_global[: ,:, h_pad:, w_pad:]
value += value_global * c2
count += torch.ones_like(value_global) * c2
###########################################################
latents = torch.where(count > 0, value / count, value)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
#########################################################################################################################################
latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean
if self.lowvram:
latents = latents.cpu()
torch.cuda.empty_cache()
if output_type != "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if self.lowvram:
needs_upcasting = False # use madebyollin/sdxl-vae-fp16-fix in lowvram mode!
self.unet.cpu()
self.vae.to(device)
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
shared.log.debug(f'DemoFusion: phase={current_scale_num} decoding')
if multi_decoder:
image = self.tiled_decode(latents, current_height, current_width)
else:
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
image = self.image_processor.postprocess(image, output_type=output_type)
output_images.append(image[0])
else:
image = latents
output_images.append(image)
# Offload all models
self.maybe_free_model_hooks()
output = ImagePipelineOutput(images=output_images)
return output
# Overrride to properly handle the loading and unloading of the additional text encoder.
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): # pylint: disable=arguments-differ
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# Remove any existing hooks.
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
else:
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.")
is_model_cpu_offload = False
is_sequential_cpu_offload = False
recursive = False
for _, component in self.components.items():
if isinstance(component, torch.nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) # pylint: disable=protected-access
is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook) # pylint: disable=protected-access
shared.log.info("Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again.")
recursive = is_sequential_cpu_offload
remove_hook_from_module(component, recurse=recursive)
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
)
# Offload back.
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
def _remove_text_encoder_monkey_patch(self):
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
### Script definition
class Script(scripts.Script):
def title(self):
return 'DemoFusion'
def show(self, is_img2img):
return not is_img2img if shared.backend == shared.Backend.DIFFUSERS else False
# return signature is array of gradio components
def ui(self, _is_img2img):
with gr.Row():
gr.HTML('<a href="https://github.com/PRIS-CV/DemoFusion">&nbsp DemoFusion</a><br>')
with gr.Row():
cosine_scale_1 = gr.Slider(minimum=0, maximum=5, step=0.1, value=3, label="Cosine scale 1")
cosine_scale_2 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine scale 2")
cosine_scale_3 = gr.Slider(minimum=0, maximum=5, step=0.1, value=1, label="Cosine scale 3")
with gr.Row():
view_batch_size = gr.Slider(minimum=4, maximum=32, step=4, value=8, label="Denoising batch size")
sigma = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=0.8, label="Sigma")
stride = gr.Slider(minimum=8, maximum=96, step=8, value=64, label="Stride")
with gr.Row():
multi_decoder = gr.Checkbox(label="Multi decoder", value=True)
return [cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, multi_decoder]
def run(self, p: processing.StableDiffusionProcessing, cosine_scale_1, cosine_scale_2, cosine_scale_3, sigma, view_batch_size, stride, multi_decoder): # pylint: disable=arguments-differ
c = shared.sd_model.__class__.__name__ if shared.sd_model is not None else ''
if c != 'StableDiffusionXLPipeline':
shared.log.warning(f'DemoFusion: pipeline={c} required=StableDiffusionXLPipeline')
return None
p.task_args['cosine_scale_1'] = cosine_scale_1
p.task_args['cosine_scale_2'] = cosine_scale_2
p.task_args['cosine_scale_3'] = cosine_scale_3
p.task_args['sigma'] = sigma
p.task_args['view_batch_size'] = view_batch_size
p.task_args['stride'] = stride
p.task_args['multi_decoder'] = multi_decoder
p.task_args['output_type'] = 'np'
p.task_args['low_vram'] = True
shared.log.debug(f'DemoFusion: {p.task_args}')
old_pipe = shared.sd_model
new_pipe = DemoFusionSDXLPipeline(
vae = shared.sd_model.vae,
text_encoder=shared.sd_model.text_encoder,
text_encoder_2=shared.sd_model.text_encoder_2,
tokenizer=shared.sd_model.tokenizer,
tokenizer_2=shared.sd_model.tokenizer_2,
unet=shared.sd_model.unet,
scheduler=shared.sd_model.scheduler,
force_zeros_for_empty_prompt=shared.opts.diffusers_force_zeros,
)
shared.sd_model = new_pipe
sd_models.move_model(shared.sd_model, devices.device) # move pipeline to device
sd_models.set_diffuser_options(shared.sd_model, vae=None, op='model')
shared.log.debug(f'DemoFusion create: pipeline={shared.sd_model.__class__.__name__}')
processed = processing.process_images(p)
shared.sd_model = old_pipe
return processed