Spaces:
Runtime error
Runtime error
"""SAMPLING ONLY.""" | |
import torch | |
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC, get_time_steps | |
from modules import shared, devices | |
class UniPCSampler(object): | |
def __init__(self, model, **kwargs): | |
super().__init__() | |
self.model = model | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device) | |
self.before_sample = None | |
self.after_sample = None | |
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod)) | |
self.noise_schedule = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod) | |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): | |
# persist steps so we can eventually find denoising strength | |
self.inflated_steps = ddim_num_steps | |
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): | |
if noise is None: | |
noise = torch.randn_like(x0) | |
# first time we have all the info to get the real parameters from the ui | |
# value from the hires steps slider: | |
num_inference_steps = t[0] + 1 | |
num_inference_steps / self.inflated_steps | |
self.denoise_steps = max(num_inference_steps, shared.opts.schedulers_solver_order) | |
max(self.inflated_steps - self.denoise_steps, 0) | |
# actual number of steps we'll run | |
all_timesteps = get_time_steps( | |
self.noise_schedule, | |
shared.opts.uni_pc_skip_type, | |
self.noise_schedule.T, | |
1./self.noise_schedule.total_N, | |
self.inflated_steps+1, | |
t.device, | |
) | |
# the rest of the timesteps will be used for denoising | |
self.timesteps = all_timesteps[-(self.denoise_steps+1):] | |
latent_timestep = ( | |
( # get the timestep of our first denoise step | |
self.timesteps[:1] | |
# multiply by number of alphas to get int index | |
* self.noise_schedule.total_N | |
).int() - 1 # minus one for 0-indexed | |
).repeat(x0.shape[0]) | |
alphas_cumprod = self.alphas_cumprod | |
sqrt_alpha_prod = alphas_cumprod[latent_timestep] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(x0.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[latent_timestep]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(x0.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
return (sqrt_alpha_prod * x0 + sqrt_one_minus_alpha_prod * noise) | |
def decode(self, x_latent, conditioning, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, | |
use_original_steps=False, callback=None): | |
# same as in .sample(), i guess | |
model_type = "v" if self.model.parameterization == "v" else "noise" | |
model_fn = model_wrapper( | |
lambda x, t, c: self.model.apply_model(x, t, c), | |
self.noise_schedule, | |
model_type=model_type, | |
guidance_type="classifier-free", | |
#condition=conditioning, | |
#unconditional_condition=unconditional_conditioning, | |
guidance_scale=unconditional_guidance_scale, | |
) | |
self.uni_pc = UniPC( | |
model_fn, | |
self.noise_schedule, | |
predict_x0=True, | |
thresholding=False, | |
variant=shared.opts.uni_pc_variant, | |
condition=conditioning, | |
unconditional_condition=unconditional_conditioning, | |
before_sample=self.before_sample, | |
after_sample=self.after_sample, | |
after_update=self.after_update, | |
) | |
return self.uni_pc.sample( | |
x_latent, | |
steps=self.denoise_steps, | |
skip_type=shared.opts.uni_pc_skip_type, | |
method="multistep", | |
order=shared.opts.schedulers_solver_order, | |
lower_order_final=shared.opts.schedulers_use_loworder, | |
denoise_to_zero=True, | |
timesteps=self.timesteps, | |
) | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
if attr.device != devices.device: | |
attr = attr.to(devices.device) | |
setattr(self, name, attr) | |
def set_hooks(self, before_sample, after_sample, after_update): | |
self.before_sample = before_sample | |
self.after_sample = after_sample | |
self.after_update = after_update | |
def sample(self, | |
S, | |
batch_size, | |
shape, | |
conditioning=None, | |
callback=None, | |
normals_sequence=None, | |
img_callback=None, | |
quantize_x0=False, | |
eta=0., | |
mask=None, | |
x0=None, | |
temperature=1., | |
noise_dropout=0., | |
score_corrector=None, | |
corrector_kwargs=None, | |
verbose=True, | |
x_T=None, | |
log_every_t=100, | |
unconditional_guidance_scale=1., | |
unconditional_conditioning=None, | |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
**kwargs | |
): | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
ctmp = conditioning[list(conditioning.keys())[0]] | |
while isinstance(ctmp, list): | |
ctmp = ctmp[0] | |
cbs = ctmp.shape[0] | |
if cbs != batch_size: | |
shared.log.warning(f"UniPC: got {cbs} conditionings but batch-size is {batch_size}") | |
elif isinstance(conditioning, list): | |
for ctmp in conditioning: | |
if ctmp.shape[0] != batch_size: | |
shared.log.warning(f"UniPC: Got {cbs} conditionings but batch-size is {batch_size}") | |
else: | |
if conditioning.shape[0] != batch_size: | |
shared.log.warning(f"UniPC: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
device = self.model.betas.device | |
if x_T is None: | |
img = torch.randn(size, device=device) | |
else: | |
img = x_T | |
# SD 1.X is "noise", SD 2.X is "v" | |
model_type = "v" if self.model.parameterization == "v" else "noise" | |
model_fn = model_wrapper( | |
lambda x, t, c: self.model.apply_model(x, t, c), | |
self.noise_schedule, | |
model_type=model_type, | |
guidance_type="classifier-free", | |
#condition=conditioning, | |
#unconditional_condition=unconditional_conditioning, | |
guidance_scale=unconditional_guidance_scale, | |
) | |
uni_pc = UniPC(model_fn, self.noise_schedule, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update) | |
x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.schedulers_solver_order, lower_order_final=shared.opts.schedulers_use_loworder) | |
return x.to(device), None | |