test / modules /unipc /sampler.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
"""SAMPLING ONLY."""
import torch
from .uni_pc import NoiseScheduleVP, model_wrapper, UniPC, get_time_steps
from modules import shared, devices
class UniPCSampler(object):
def __init__(self, model, **kwargs):
super().__init__()
self.model = model
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
self.before_sample = None
self.after_sample = None
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
self.noise_schedule = NoiseScheduleVP("discrete", alphas_cumprod=self.alphas_cumprod)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
# persist steps so we can eventually find denoising strength
self.inflated_steps = ddim_num_steps
@devices.inference_context()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
if noise is None:
noise = torch.randn_like(x0)
# first time we have all the info to get the real parameters from the ui
# value from the hires steps slider:
num_inference_steps = t[0] + 1
num_inference_steps / self.inflated_steps
self.denoise_steps = max(num_inference_steps, shared.opts.schedulers_solver_order)
max(self.inflated_steps - self.denoise_steps, 0)
# actual number of steps we'll run
all_timesteps = get_time_steps(
self.noise_schedule,
shared.opts.uni_pc_skip_type,
self.noise_schedule.T,
1./self.noise_schedule.total_N,
self.inflated_steps+1,
t.device,
)
# the rest of the timesteps will be used for denoising
self.timesteps = all_timesteps[-(self.denoise_steps+1):]
latent_timestep = (
( # get the timestep of our first denoise step
self.timesteps[:1]
# multiply by number of alphas to get int index
* self.noise_schedule.total_N
).int() - 1 # minus one for 0-indexed
).repeat(x0.shape[0])
alphas_cumprod = self.alphas_cumprod
sqrt_alpha_prod = alphas_cumprod[latent_timestep] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(x0.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[latent_timestep]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(x0.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
return (sqrt_alpha_prod * x0 + sqrt_one_minus_alpha_prod * noise)
def decode(self, x_latent, conditioning, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
use_original_steps=False, callback=None):
# same as in .sample(), i guess
model_type = "v" if self.model.parameterization == "v" else "noise"
model_fn = model_wrapper(
lambda x, t, c: self.model.apply_model(x, t, c),
self.noise_schedule,
model_type=model_type,
guidance_type="classifier-free",
#condition=conditioning,
#unconditional_condition=unconditional_conditioning,
guidance_scale=unconditional_guidance_scale,
)
self.uni_pc = UniPC(
model_fn,
self.noise_schedule,
predict_x0=True,
thresholding=False,
variant=shared.opts.uni_pc_variant,
condition=conditioning,
unconditional_condition=unconditional_conditioning,
before_sample=self.before_sample,
after_sample=self.after_sample,
after_update=self.after_update,
)
return self.uni_pc.sample(
x_latent,
steps=self.denoise_steps,
skip_type=shared.opts.uni_pc_skip_type,
method="multistep",
order=shared.opts.schedulers_solver_order,
lower_order_final=shared.opts.schedulers_use_loworder,
denoise_to_zero=True,
timesteps=self.timesteps,
)
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != devices.device:
attr = attr.to(devices.device)
setattr(self, name, attr)
def set_hooks(self, before_sample, after_sample, after_update):
self.before_sample = before_sample
self.after_sample = after_sample
self.after_update = after_update
@devices.inference_context()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
shared.log.warning(f"UniPC: got {cbs} conditionings but batch-size is {batch_size}")
elif isinstance(conditioning, list):
for ctmp in conditioning:
if ctmp.shape[0] != batch_size:
shared.log.warning(f"UniPC: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
shared.log.warning(f"UniPC: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
# sampling
C, H, W = shape
size = (batch_size, C, H, W)
device = self.model.betas.device
if x_T is None:
img = torch.randn(size, device=device)
else:
img = x_T
# SD 1.X is "noise", SD 2.X is "v"
model_type = "v" if self.model.parameterization == "v" else "noise"
model_fn = model_wrapper(
lambda x, t, c: self.model.apply_model(x, t, c),
self.noise_schedule,
model_type=model_type,
guidance_type="classifier-free",
#condition=conditioning,
#unconditional_condition=unconditional_conditioning,
guidance_scale=unconditional_guidance_scale,
)
uni_pc = UniPC(model_fn, self.noise_schedule, predict_x0=True, thresholding=False, variant=shared.opts.uni_pc_variant, condition=conditioning, unconditional_condition=unconditional_conditioning, before_sample=self.before_sample, after_sample=self.after_sample, after_update=self.after_update)
x = uni_pc.sample(img, steps=S, skip_type=shared.opts.uni_pc_skip_type, method="multistep", order=shared.opts.schedulers_solver_order, lower_order_final=shared.opts.schedulers_use_loworder)
return x.to(device), None