test / modules /face /faceid.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
from typing import List
import os
import cv2
import torch
import numpy as np
import diffusers
import huggingface_hub as hf
from PIL import Image
from modules import processing, shared, devices, extra_networks, sd_models, sd_hijack_freeu, script_callbacks, ipadapter
from modules.sd_hijack_hypertile import context_hypertile_vae, context_hypertile_unet
FACEID_MODELS = {
"FaceID Base": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sd15.bin",
"FaceID Plus v1": "h94/IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin",
"FaceID Plus v2": "h94/IP-Adapter-FaceID/ip-adapter-faceid-plusv2_sd15.bin",
"FaceID XL": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sdxl.bin",
# "FaceID Portrait v10": "h94/IP-Adapter-FaceID/ip-adapter-faceid-portrait_sd15.bin",
# "FaceID Portrait v11": "h94/IP-Adapter-FaceID/ip-adapter-faceid-portrait-v11_sd15.bin",
# "FaceID XL Plus v2": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sdxl.bin",
}
faceid_model_weights = None
faceid_model_name = None
debug = shared.log.trace if os.environ.get("SD_FACE_DEBUG", None) is not None else lambda *args, **kwargs: None
def hijack_load_ip_adapter(self):
self.image_proj_model.load_state_dict(faceid_model_weights["image_proj"])
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
ip_layers.load_state_dict(faceid_model_weights["ip_adapter"], strict=False)
def face_id(
p: processing.StableDiffusionProcessing,
app,
source_images: List[Image.Image],
model: str,
override: bool,
cache: bool,
scale: float,
structure: float,
):
global faceid_model_weights, faceid_model_name # pylint: disable=global-statement
if source_images is None or len(source_images) == 0:
shared.log.warning('FaceID: no input images')
return None
from insightface.utils import face_align
try:
from ip_adapter.ip_adapter_faceid import (
IPAdapterFaceID,
IPAdapterFaceIDPlus,
IPAdapterFaceIDXL,
IPAdapterFaceIDPlusXL,
)
from ip_adapter.ip_adapter_faceid_separate import (
IPAdapterFaceID as IPAdapterFaceIDPortrait,
)
except Exception as e:
shared.log.error(f"FaceID incorrect version of ip_adapter: {e}")
return None
processed_images = []
faceid_model = None
original_load_ip_adapter = None
try:
shared.prompt_styles.apply_styles_to_extra(p)
if not shared.opts.cuda_compile:
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
sd_hijack_freeu.apply_freeu(p, shared.backend == shared.Backend.ORIGINAL)
script_callbacks.before_process_callback(p)
with context_hypertile_vae(p), context_hypertile_unet(p), devices.inference_context():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
ip_ckpt = FACEID_MODELS[model]
folder, filename = os.path.split(ip_ckpt)
basename, _ext = os.path.splitext(filename)
model_path = hf.hf_hub_download(repo_id=folder, filename=filename, cache_dir=shared.opts.diffusers_dir)
if model_path is None:
shared.log.error(f"FaceID download failed: model={model} file={ip_ckpt}")
return None
if override:
shared.sd_model.scheduler = diffusers.DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
if faceid_model_weights is None or faceid_model_name != model or not cache:
shared.log.debug(f"FaceID load: model={model} file={ip_ckpt}")
faceid_model_weights = torch.load(model_path, map_location="cpu")
else:
shared.log.debug(f"FaceID cached: model={model} file={ip_ckpt}")
if "XL Plus" in model:
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
original_load_ip_adapter = IPAdapterFaceIDPlusXL.load_ip_adapter
IPAdapterFaceIDPlusXL.load_ip_adapter = hijack_load_ip_adapter
faceid_model = IPAdapterFaceIDPlusXL(
sd_pipe=shared.sd_model,
image_encoder_path=image_encoder_path,
ip_ckpt=model_path,
lora_rank=128,
num_tokens=4,
device=devices.device,
torch_dtype=devices.dtype,
)
elif "XL" in model:
original_load_ip_adapter = IPAdapterFaceIDXL.load_ip_adapter
IPAdapterFaceIDXL.load_ip_adapter = hijack_load_ip_adapter
faceid_model = IPAdapterFaceIDXL(
sd_pipe=shared.sd_model,
ip_ckpt=model_path,
lora_rank=128,
num_tokens=4,
device=devices.device,
torch_dtype=devices.dtype,
)
elif "Plus" in model:
original_load_ip_adapter = IPAdapterFaceIDPlus.load_ip_adapter
IPAdapterFaceIDPlus.load_ip_adapter = hijack_load_ip_adapter
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
faceid_model = IPAdapterFaceIDPlus(
sd_pipe=shared.sd_model,
image_encoder_path=image_encoder_path,
ip_ckpt=model_path,
lora_rank=128,
num_tokens=4,
device=devices.device,
torch_dtype=devices.dtype,
)
elif "Portrait" in model:
original_load_ip_adapter = IPAdapterFaceIDPortrait.load_ip_adapter
IPAdapterFaceIDPortrait.load_ip_adapter = hijack_load_ip_adapter
faceid_model = IPAdapterFaceIDPortrait(
sd_pipe=shared.sd_model,
ip_ckpt=model_path,
num_tokens=16,
n_cond=5,
device=devices.device,
torch_dtype=devices.dtype,
)
else:
original_load_ip_adapter = IPAdapterFaceID.load_ip_adapter
IPAdapterFaceID.load_ip_adapter = hijack_load_ip_adapter
faceid_model = IPAdapterFaceID(
sd_pipe=shared.sd_model,
ip_ckpt=model_path,
lora_rank=128,
num_tokens=4,
device=devices.device,
torch_dtype=devices.dtype,
)
shortcut = "v2" in model
faceid_model_name = model
face_embeds = []
face_images = []
for i, source_image in enumerate(source_images):
np_image = cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR)
faces = app.get(np_image)
if len(faces) == 0:
shared.log.error("FaceID: no faces found")
break
face_embeds.append(torch.from_numpy(faces[0].normed_embedding).unsqueeze(0))
face_images.append(face_align.norm_crop(np_image, landmark=faces[0].kps, image_size=224))
shared.log.debug(f'FaceID face: i={i+1} score={faces[0].det_score:.2f} gender={"female" if faces[0].gender==0 else "male"} age={faces[0].age} bbox={faces[0].bbox}')
p.extra_generation_params[f"FaceID {i+1}"] = f'{faces[0].det_score:.2f} {"female" if faces[0].gender==0 else "male"} {faces[0].age}y'
if len(face_embeds) == 0:
shared.log.error("FaceID: no faces found")
return None
face_embeds = torch.cat(face_embeds, dim=0)
ip_model_dict = { # main generate dict
"num_samples": p.batch_size,
"width": p.width,
"height": p.height,
"num_inference_steps": p.steps,
"scale": scale,
"guidance_scale": p.cfg_scale,
"faceid_embeds": face_embeds.shape, # placeholder
}
# optional generate dict
if shortcut is not None:
ip_model_dict["shortcut"] = shortcut
if "Plus" in model:
ip_model_dict["s_scale"] = structure
shared.log.debug(f"FaceID args: {ip_model_dict}")
if "Plus" in model:
ip_model_dict["face_image"] = face_images
ip_model_dict["faceid_embeds"] = face_embeds # overwrite placeholder
faceid_model.set_scale(scale)
extra_network_data = None
for i in range(p.n_iter):
p.iteration = i
p.prompts = p.all_prompts[i * p.batch_size:(i + 1) * p.batch_size]
p.negative_prompts = p.all_negative_prompts[i * p.batch_size:(i + 1) * p.batch_size]
p.prompts, extra_network_data = extra_networks.parse_prompts(p.prompts)
p.seeds = p.all_seeds[i * p.batch_size:(i + 1) * p.batch_size]
if not p.disable_extra_networks:
with devices.autocast():
extra_networks.activate(p, extra_network_data)
ip_model_dict.update({
"prompt": p.prompts,
"negative_prompt": p.negative_prompts,
"seed": int(p.seeds[0]),
})
debug(f"FaceID: {ip_model_dict}")
res = faceid_model.generate(**ip_model_dict)
if isinstance(res, list):
processed_images += res
faceid_model.set_scale(0)
faceid_model = None
if not cache:
faceid_model_weights = None
faceid_model_name = None
devices.torch_gc()
ipadapter.unapply(p.sd_model)
if not p.disable_extra_networks:
extra_networks.deactivate(p, extra_network_data)
p.extra_generation_params["IP Adapter"] = f"{basename}:{scale}"
finally:
if faceid_model is not None and original_load_ip_adapter is not None:
faceid_model.__class__.load_ip_adapter = original_load_ip_adapter
if not shared.opts.cuda_compile:
sd_models.apply_token_merging(p.sd_model, 0)
script_callbacks.after_process_callback(p)
return processed_images