Spaces:
Runtime error
Runtime error
from typing import List | |
import os | |
import cv2 | |
import torch | |
import numpy as np | |
import diffusers | |
import huggingface_hub as hf | |
from PIL import Image | |
from modules import processing, shared, devices, extra_networks, sd_models, sd_hijack_freeu, script_callbacks, ipadapter | |
from modules.sd_hijack_hypertile import context_hypertile_vae, context_hypertile_unet | |
FACEID_MODELS = { | |
"FaceID Base": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sd15.bin", | |
"FaceID Plus v1": "h94/IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin", | |
"FaceID Plus v2": "h94/IP-Adapter-FaceID/ip-adapter-faceid-plusv2_sd15.bin", | |
"FaceID XL": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sdxl.bin", | |
# "FaceID Portrait v10": "h94/IP-Adapter-FaceID/ip-adapter-faceid-portrait_sd15.bin", | |
# "FaceID Portrait v11": "h94/IP-Adapter-FaceID/ip-adapter-faceid-portrait-v11_sd15.bin", | |
# "FaceID XL Plus v2": "h94/IP-Adapter-FaceID/ip-adapter-faceid_sdxl.bin", | |
} | |
faceid_model_weights = None | |
faceid_model_name = None | |
debug = shared.log.trace if os.environ.get("SD_FACE_DEBUG", None) is not None else lambda *args, **kwargs: None | |
def hijack_load_ip_adapter(self): | |
self.image_proj_model.load_state_dict(faceid_model_weights["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(faceid_model_weights["ip_adapter"], strict=False) | |
def face_id( | |
p: processing.StableDiffusionProcessing, | |
app, | |
source_images: List[Image.Image], | |
model: str, | |
override: bool, | |
cache: bool, | |
scale: float, | |
structure: float, | |
): | |
global faceid_model_weights, faceid_model_name # pylint: disable=global-statement | |
if source_images is None or len(source_images) == 0: | |
shared.log.warning('FaceID: no input images') | |
return None | |
from insightface.utils import face_align | |
try: | |
from ip_adapter.ip_adapter_faceid import ( | |
IPAdapterFaceID, | |
IPAdapterFaceIDPlus, | |
IPAdapterFaceIDXL, | |
IPAdapterFaceIDPlusXL, | |
) | |
from ip_adapter.ip_adapter_faceid_separate import ( | |
IPAdapterFaceID as IPAdapterFaceIDPortrait, | |
) | |
except Exception as e: | |
shared.log.error(f"FaceID incorrect version of ip_adapter: {e}") | |
return None | |
processed_images = [] | |
faceid_model = None | |
original_load_ip_adapter = None | |
try: | |
shared.prompt_styles.apply_styles_to_extra(p) | |
if not shared.opts.cuda_compile: | |
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio()) | |
sd_hijack_freeu.apply_freeu(p, shared.backend == shared.Backend.ORIGINAL) | |
script_callbacks.before_process_callback(p) | |
with context_hypertile_vae(p), context_hypertile_unet(p), devices.inference_context(): | |
p.init(p.all_prompts, p.all_seeds, p.all_subseeds) | |
ip_ckpt = FACEID_MODELS[model] | |
folder, filename = os.path.split(ip_ckpt) | |
basename, _ext = os.path.splitext(filename) | |
model_path = hf.hf_hub_download(repo_id=folder, filename=filename, cache_dir=shared.opts.diffusers_dir) | |
if model_path is None: | |
shared.log.error(f"FaceID download failed: model={model} file={ip_ckpt}") | |
return None | |
if override: | |
shared.sd_model.scheduler = diffusers.DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
if faceid_model_weights is None or faceid_model_name != model or not cache: | |
shared.log.debug(f"FaceID load: model={model} file={ip_ckpt}") | |
faceid_model_weights = torch.load(model_path, map_location="cpu") | |
else: | |
shared.log.debug(f"FaceID cached: model={model} file={ip_ckpt}") | |
if "XL Plus" in model: | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
original_load_ip_adapter = IPAdapterFaceIDPlusXL.load_ip_adapter | |
IPAdapterFaceIDPlusXL.load_ip_adapter = hijack_load_ip_adapter | |
faceid_model = IPAdapterFaceIDPlusXL( | |
sd_pipe=shared.sd_model, | |
image_encoder_path=image_encoder_path, | |
ip_ckpt=model_path, | |
lora_rank=128, | |
num_tokens=4, | |
device=devices.device, | |
torch_dtype=devices.dtype, | |
) | |
elif "XL" in model: | |
original_load_ip_adapter = IPAdapterFaceIDXL.load_ip_adapter | |
IPAdapterFaceIDXL.load_ip_adapter = hijack_load_ip_adapter | |
faceid_model = IPAdapterFaceIDXL( | |
sd_pipe=shared.sd_model, | |
ip_ckpt=model_path, | |
lora_rank=128, | |
num_tokens=4, | |
device=devices.device, | |
torch_dtype=devices.dtype, | |
) | |
elif "Plus" in model: | |
original_load_ip_adapter = IPAdapterFaceIDPlus.load_ip_adapter | |
IPAdapterFaceIDPlus.load_ip_adapter = hijack_load_ip_adapter | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
faceid_model = IPAdapterFaceIDPlus( | |
sd_pipe=shared.sd_model, | |
image_encoder_path=image_encoder_path, | |
ip_ckpt=model_path, | |
lora_rank=128, | |
num_tokens=4, | |
device=devices.device, | |
torch_dtype=devices.dtype, | |
) | |
elif "Portrait" in model: | |
original_load_ip_adapter = IPAdapterFaceIDPortrait.load_ip_adapter | |
IPAdapterFaceIDPortrait.load_ip_adapter = hijack_load_ip_adapter | |
faceid_model = IPAdapterFaceIDPortrait( | |
sd_pipe=shared.sd_model, | |
ip_ckpt=model_path, | |
num_tokens=16, | |
n_cond=5, | |
device=devices.device, | |
torch_dtype=devices.dtype, | |
) | |
else: | |
original_load_ip_adapter = IPAdapterFaceID.load_ip_adapter | |
IPAdapterFaceID.load_ip_adapter = hijack_load_ip_adapter | |
faceid_model = IPAdapterFaceID( | |
sd_pipe=shared.sd_model, | |
ip_ckpt=model_path, | |
lora_rank=128, | |
num_tokens=4, | |
device=devices.device, | |
torch_dtype=devices.dtype, | |
) | |
shortcut = "v2" in model | |
faceid_model_name = model | |
face_embeds = [] | |
face_images = [] | |
for i, source_image in enumerate(source_images): | |
np_image = cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR) | |
faces = app.get(np_image) | |
if len(faces) == 0: | |
shared.log.error("FaceID: no faces found") | |
break | |
face_embeds.append(torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)) | |
face_images.append(face_align.norm_crop(np_image, landmark=faces[0].kps, image_size=224)) | |
shared.log.debug(f'FaceID face: i={i+1} score={faces[0].det_score:.2f} gender={"female" if faces[0].gender==0 else "male"} age={faces[0].age} bbox={faces[0].bbox}') | |
p.extra_generation_params[f"FaceID {i+1}"] = f'{faces[0].det_score:.2f} {"female" if faces[0].gender==0 else "male"} {faces[0].age}y' | |
if len(face_embeds) == 0: | |
shared.log.error("FaceID: no faces found") | |
return None | |
face_embeds = torch.cat(face_embeds, dim=0) | |
ip_model_dict = { # main generate dict | |
"num_samples": p.batch_size, | |
"width": p.width, | |
"height": p.height, | |
"num_inference_steps": p.steps, | |
"scale": scale, | |
"guidance_scale": p.cfg_scale, | |
"faceid_embeds": face_embeds.shape, # placeholder | |
} | |
# optional generate dict | |
if shortcut is not None: | |
ip_model_dict["shortcut"] = shortcut | |
if "Plus" in model: | |
ip_model_dict["s_scale"] = structure | |
shared.log.debug(f"FaceID args: {ip_model_dict}") | |
if "Plus" in model: | |
ip_model_dict["face_image"] = face_images | |
ip_model_dict["faceid_embeds"] = face_embeds # overwrite placeholder | |
faceid_model.set_scale(scale) | |
extra_network_data = None | |
for i in range(p.n_iter): | |
p.iteration = i | |
p.prompts = p.all_prompts[i * p.batch_size:(i + 1) * p.batch_size] | |
p.negative_prompts = p.all_negative_prompts[i * p.batch_size:(i + 1) * p.batch_size] | |
p.prompts, extra_network_data = extra_networks.parse_prompts(p.prompts) | |
p.seeds = p.all_seeds[i * p.batch_size:(i + 1) * p.batch_size] | |
if not p.disable_extra_networks: | |
with devices.autocast(): | |
extra_networks.activate(p, extra_network_data) | |
ip_model_dict.update({ | |
"prompt": p.prompts, | |
"negative_prompt": p.negative_prompts, | |
"seed": int(p.seeds[0]), | |
}) | |
debug(f"FaceID: {ip_model_dict}") | |
res = faceid_model.generate(**ip_model_dict) | |
if isinstance(res, list): | |
processed_images += res | |
faceid_model.set_scale(0) | |
faceid_model = None | |
if not cache: | |
faceid_model_weights = None | |
faceid_model_name = None | |
devices.torch_gc() | |
ipadapter.unapply(p.sd_model) | |
if not p.disable_extra_networks: | |
extra_networks.deactivate(p, extra_network_data) | |
p.extra_generation_params["IP Adapter"] = f"{basename}:{scale}" | |
finally: | |
if faceid_model is not None and original_load_ip_adapter is not None: | |
faceid_model.__class__.load_ip_adapter = original_load_ip_adapter | |
if not shared.opts.cuda_compile: | |
sd_models.apply_token_merging(p.sd_model, 0) | |
script_callbacks.after_process_callback(p) | |
return processed_images | |