Spaces:
Runtime error
Runtime error
from enum import Enum | |
from typing import Any, List, NamedTuple | |
from functools import lru_cache | |
class UnetBlockType(Enum): | |
INPUT = "input" | |
OUTPUT = "output" | |
MIDDLE = "middle" | |
class TransformerID(NamedTuple): | |
block_type: UnetBlockType | |
# The id of the block the transformer is in. Not all blocks have cross attn. | |
block_id: int | |
# The index of transformer within the block. | |
# A block can have multiple transformers in SDXL. | |
block_index: int | |
# The call index of transformer if in a single step of diffusion. | |
transformer_index: int | |
class TransformerIDResult(NamedTuple): | |
input_ids: List[TransformerID] | |
output_ids: List[TransformerID] | |
middle_ids: List[TransformerID] | |
def get(self, idx: int) -> TransformerID: | |
return self.to_list()[idx] | |
def to_list(self) -> List[TransformerID]: | |
return sorted( | |
self.input_ids + self.output_ids + self.middle_ids, | |
key=lambda i: i.transformer_index, | |
) | |
class StableDiffusionVersion(Enum): | |
"""The version family of stable diffusion model.""" | |
UNKNOWN = 0 | |
SD1x = 1 | |
SD2x = 2 | |
SDXL = 3 | |
def detect_from_model_name(model_name: str) -> "StableDiffusionVersion": | |
"""Based on the model name provided, guess what stable diffusion version it is. | |
This might not be accurate without actually inspect the file content. | |
""" | |
if any(f"sd{v}" in model_name.lower() for v in ("14", "15", "16")): | |
return StableDiffusionVersion.SD1x | |
if "sd21" in model_name or "2.1" in model_name: | |
return StableDiffusionVersion.SD2x | |
if "xl" in model_name.lower(): | |
return StableDiffusionVersion.SDXL | |
return StableDiffusionVersion.UNKNOWN | |
def encoder_block_num(self) -> int: | |
if self in ( | |
StableDiffusionVersion.SD1x, | |
StableDiffusionVersion.SD2x, | |
StableDiffusionVersion.UNKNOWN, | |
): | |
return 12 | |
else: | |
return 9 # SDXL | |
def controlnet_layer_num(self) -> int: | |
return self.encoder_block_num() + 1 | |
def transformer_block_num(self) -> int: | |
"""Number of blocks that has cross attn transformers in unet.""" | |
if self in ( | |
StableDiffusionVersion.SD1x, | |
StableDiffusionVersion.SD2x, | |
StableDiffusionVersion.UNKNOWN, | |
): | |
return 16 | |
else: | |
return 11 # SDXL | |
def transformer_ids(self) -> List[TransformerID]: | |
"""id of blocks that have cross attention""" | |
if self in ( | |
StableDiffusionVersion.SD1x, | |
StableDiffusionVersion.SD2x, | |
StableDiffusionVersion.UNKNOWN, | |
): | |
transformer_index = 0 | |
input_ids = [] | |
for block_id in [1, 2, 4, 5, 7, 8]: | |
input_ids.append( | |
TransformerID(UnetBlockType.INPUT, block_id, 0, transformer_index) | |
) | |
transformer_index += 1 | |
middle_id = TransformerID(UnetBlockType.MIDDLE, 0, 0, transformer_index) | |
transformer_index += 1 | |
output_ids = [] | |
for block_id in [3, 4, 5, 6, 7, 8, 9, 10, 11]: | |
input_ids.append( | |
TransformerID(UnetBlockType.OUTPUT, block_id, 0, transformer_index) | |
) | |
transformer_index += 1 | |
return TransformerIDResult(input_ids, output_ids, [middle_id]) | |
else: | |
# SDXL | |
transformer_index = 0 | |
input_ids = [] | |
for block_id in [4, 5, 7, 8]: | |
block_indices = ( | |
range(2) if block_id in [4, 5] else range(10) | |
) # transformer_depth | |
for index in block_indices: | |
input_ids.append( | |
TransformerID( | |
UnetBlockType.INPUT, block_id, index, transformer_index | |
) | |
) | |
transformer_index += 1 | |
middle_ids = [ | |
TransformerID(UnetBlockType.MIDDLE, 0, index, transformer_index) | |
for index in range(10) | |
] | |
transformer_index += 1 | |
output_ids = [] | |
for block_id in range(6): | |
block_indices = ( | |
range(2) if block_id in [3, 4, 5] else range(10) | |
) # transformer_depth | |
for index in block_indices: | |
output_ids.append( | |
TransformerID( | |
UnetBlockType.OUTPUT, block_id, index, transformer_index | |
) | |
) | |
transformer_index += 1 | |
return TransformerIDResult(input_ids, output_ids, middle_ids) | |
def is_compatible_with(self, other: "StableDiffusionVersion") -> bool: | |
"""Incompatible only when one of version is SDXL and other is not.""" | |
return ( | |
any(v == StableDiffusionVersion.UNKNOWN for v in [self, other]) | |
or sum(v == StableDiffusionVersion.SDXL for v in [self, other]) != 1 | |
) | |
class ControlModelType(Enum): | |
""" | |
The type of Control Models (supported or not). | |
""" | |
ControlNet = "ControlNet, Lvmin Zhang" | |
T2I_Adapter = "T2I_Adapter, Chong Mou" | |
T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou" | |
T2I_CoAdapter = "T2I_CoAdapter, Chong Mou" | |
MasaCtrl = "MasaCtrl, Mingdeng Cao" | |
GLIGEN = "GLIGEN, Yuheng Li" | |
AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin | |
StableSR = "StableSR, Jianyi Wang" | |
PromptDiffusion = "PromptDiffusion, Zhendong Wang" | |
ControlLoRA = "ControlLoRA, Wu Hecong" | |
ReVision = "ReVision, Stability" | |
IPAdapter = "IPAdapter, Hu Ye" | |
Controlllite = "Controlllite, Kohya" | |
InstantID = "InstantID, Qixun Wang" | |
SparseCtrl = "SparseCtrl, Yuwei Guo" | |
def is_controlnet(self) -> bool: | |
"""Returns whether the control model should be treated as ControlNet.""" | |
return self in ( | |
ControlModelType.ControlNet, | |
ControlModelType.ControlLoRA, | |
ControlModelType.InstantID, | |
) | |
def allow_context_sharing(self) -> bool: | |
"""Returns whether this control model type allows the same PlugableControlModel | |
object map to multiple ControlNetUnit. | |
Both IPAdapter and Controlllite have unit specific input (clip/image) stored | |
on the model object during inference. Sharing the context means that the input | |
set earlier gets lost. | |
""" | |
return self not in ( | |
ControlModelType.IPAdapter, | |
ControlModelType.Controlllite, | |
) | |
# Written by Lvmin | |
class AutoMachine(Enum): | |
""" | |
Lvmin's algorithm for Attention/AdaIn AutoMachine States. | |
""" | |
Read = "Read" | |
Write = "Write" | |
StyleAlign = "StyleAlign" | |
class HiResFixOption(Enum): | |
BOTH = "Both" | |
LOW_RES_ONLY = "Low res only" | |
HIGH_RES_ONLY = "High res only" | |
def from_value(value: Any) -> "HiResFixOption": | |
if isinstance(value, str) and value.startswith("HiResFixOption."): | |
_, field = value.split(".") | |
return getattr(HiResFixOption, field) | |
if isinstance(value, str): | |
return HiResFixOption(value) | |
elif isinstance(value, int): | |
return [x for x in HiResFixOption][value] | |
else: | |
assert isinstance(value, HiResFixOption) | |
return value | |
class InputMode(Enum): | |
# Single image to a single ControlNet unit. | |
SIMPLE = "simple" | |
# Input is a directory. N generations. Each generation takes 1 input image | |
# from the directory. | |
BATCH = "batch" | |
# Input is a directory. 1 generation. Each generation takes N input image | |
# from the directory. | |
MERGE = "merge" | |