bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import gradio as gr
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
import io
import json
from PIL import Image
from typing import List
from scripts.enums import StableDiffusionVersion
from scripts.global_state import get_sd_version
from scripts.ipadapter.weight import calc_weights
INPUT_BLOCK_COLOR = "#61bdee"
MIDDLE_BLOCK_COLOR = "#e2e2e2"
OUTPUT_BLOCK_COLOR = "#dc6e55"
def get_bar_colors(
sd_version: StableDiffusionVersion, input_color, middle_color, output_color
):
middle_block_idx = 4 if sd_version == StableDiffusionVersion.SDXL else 6
def get_color(idx):
if idx < middle_block_idx:
return input_color
elif idx == middle_block_idx:
return middle_color
else:
return output_color
return [get_color(i) for i in range(sd_version.transformer_block_num)]
def plot_weights(
numbers: List[float],
colors: List[str],
):
# Create a bar chart
plt.figure(figsize=(8, 4))
plt.bar(range(len(numbers)), numbers, color=colors)
plt.xlabel("Transformer Index")
plt.ylabel("Weight")
plt.legend(
handles=[
Patch(color=color, label=label)
for color, label in (
(INPUT_BLOCK_COLOR, "Input Block"),
(MIDDLE_BLOCK_COLOR, "Middle Block"),
(OUTPUT_BLOCK_COLOR, "Output Block"),
)
],
loc="best",
)
# Save the plot to a BytesIO buffer
buffer = io.BytesIO()
plt.savefig(buffer, format="png")
plt.close()
buffer.seek(0)
# Convert the buffer to a PIL image and return it
image = Image.open(buffer)
return image
class AdvancedWeightControl:
def __init__(self):
self.group = None
self.weight_type = None
self.weight_plot = None
self.weight_editor = None
self.weight_composition = None
def render(self):
with gr.Group(visible=False) as self.group:
with gr.Row():
self.weight_type = gr.Dropdown(
choices=[
"normal",
"ease in",
"ease out",
"ease in-out",
"reverse in-out",
"weak input",
"weak output",
"weak middle",
"strong middle",
"style transfer",
"composition",
"strong style transfer",
"style and composition",
"strong style and composition",
],
label="Weight Type",
value="normal",
)
self.weight_composition = gr.Slider(
label="Composition Weight",
minimum=0,
maximum=2.0,
value=1.0,
step=0.01,
visible=False,
)
self.weight_editor = gr.Textbox(label="Weights", visible=False)
self.weight_plot = gr.Image(
value=None,
label="Weight Plot",
interactive=False,
visible=False,
)
def register_callbacks(
self,
weight_input: gr.Slider,
advanced_weighting: gr.State,
control_type: gr.Radio,
update_unit_counter: gr.Number,
):
def advanced_weighting_supported(control_type: str) -> bool:
return control_type in ("IP-Adapter", "Instant-ID")
self.weight_type.change(
fn=lambda weight_type: gr.update(
visible=weight_type
in ("style and composition", "strong style and composition")
),
inputs=[self.weight_type],
outputs=[self.weight_composition],
)
def update_weight_textbox(
control_type: str,
weight_type: str,
weight: float,
weight_composition: float,
):
if not advanced_weighting_supported(control_type):
return gr.update()
sd_version = get_sd_version()
weights = calc_weights(weight_type, weight, sd_version, weight_composition)
return gr.update(value=str([round(w, 2) for w in weights]), visible=True)
trigger_inputs = [self.weight_type, weight_input, self.weight_composition]
for trigger_input in trigger_inputs:
trigger_input.change(
fn=update_weight_textbox,
inputs=[
control_type,
self.weight_type,
weight_input,
self.weight_composition,
],
outputs=[self.weight_editor],
)
def update_plot(weights_string: str):
try:
weights = json.loads(weights_string)
assert isinstance(weights, list)
except Exception:
return gr.update(visible=False)
sd_version = get_sd_version()
weight_plot = plot_weights(
weights,
get_bar_colors(
sd_version,
input_color=INPUT_BLOCK_COLOR,
middle_color=MIDDLE_BLOCK_COLOR,
output_color=OUTPUT_BLOCK_COLOR,
),
)
return gr.update(value=weight_plot, visible=True)
def update_advanced_weighting(weights_string: str):
try:
weights = json.loads(weights_string)
assert isinstance(weights, list)
except Exception:
return None
return weights
self.weight_editor.change(
fn=update_plot,
inputs=[self.weight_editor],
outputs=[self.weight_plot],
)
self.weight_editor.change(
fn=update_advanced_weighting,
inputs=[self.weight_editor],
outputs=[advanced_weighting],
).then(
fn=lambda x: gr.update(value=x + 1),
inputs=[update_unit_counter],
outputs=[update_unit_counter],
) # Necessary to flush gr.State change to unit state.
# TODO: Expose advanced weighting control for other control types.
def control_type_change(control_type: str, old_weights):
supported = advanced_weighting_supported(control_type)
if supported:
return (
gr.update(visible=supported),
old_weights,
gr.update(),
gr.update(),
)
else:
return (
gr.update(visible=supported),
None,
gr.update(visible=False),
gr.update(visible=False),
)
control_type.change(
fn=control_type_change,
inputs=[control_type, advanced_weighting],
outputs=[
self.group,
advanced_weighting,
self.weight_editor,
self.weight_plot,
],
)