Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import cv2 | |
import numpy as np | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
from depth_anything.dpt import DPT_DINOv2 | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
from .util import load_model | |
from .annotator_path import models_path | |
transform = Compose( | |
[ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method="lower_bound", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
] | |
) | |
class DepthAnythingDetector: | |
"""https://github.com/LiheYoung/Depth-Anything""" | |
model_dir = os.path.join(models_path, "depth_anything") | |
def __init__(self, device: torch.device): | |
self.device = device | |
self.model = ( | |
DPT_DINOv2( | |
encoder="vitl", | |
features=256, | |
out_channels=[256, 512, 1024, 1024], | |
localhub=False, | |
) | |
.to(device) | |
.eval() | |
) | |
remote_url = os.environ.get( | |
"CONTROLNET_DEPTH_ANYTHING_MODEL_URL", | |
"https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth", | |
) | |
model_path = load_model( | |
"depth_anything_vitl14.pth", remote_url=remote_url, model_dir=self.model_dir | |
) | |
self.model.load_state_dict(torch.load(model_path)) | |
def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray: | |
self.model.to(self.device) | |
h, w = image.shape[:2] | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
image = transform({"image": image})["image"] | |
image = torch.from_numpy(image).unsqueeze(0).to(self.device) | |
def predict_depth(model, image): | |
return model(image) | |
depth = predict_depth(self.model, image) | |
depth = F.interpolate( | |
depth[None], (h, w), mode="bilinear", align_corners=False | |
)[0, 0] | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.cpu().numpy().astype(np.uint8) | |
if colored: | |
return cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
else: | |
return depth | |
def unload_model(self): | |
self.model.to("cpu") | |