Spaces:
Runtime error
Runtime error
# pylint: skip-file | |
# model: SRFormer | |
# SRFormer: Permuted Self-Attention for Single Image Super-Resolution | |
import math | |
import re | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from .timm.helpers import to_2tuple | |
from .timm.weight_init import trunc_normal_ | |
class emptyModule(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
return x | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class dwconv(nn.Module): | |
def __init__(self, hidden_features): | |
super(dwconv, self).__init__() | |
self.depthwise_conv = nn.Sequential( | |
nn.Conv2d( | |
hidden_features, | |
hidden_features, | |
kernel_size=5, | |
stride=1, | |
padding=2, | |
dilation=1, | |
groups=hidden_features, | |
), | |
nn.GELU(), | |
) | |
self.hidden_features = hidden_features | |
def forward(self, x, x_size): | |
x = ( | |
x.transpose(1, 2) | |
.view(x.shape[0], self.hidden_features, x_size[0], x_size[1]) | |
.contiguous() | |
) # b Ph*Pw c | |
x = self.depthwise_conv(x) | |
x = x.flatten(2).transpose(1, 2).contiguous() | |
return x | |
class ConvFFN(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.before_add = emptyModule() | |
self.after_add = emptyModule() | |
self.dwconv = dwconv(hidden_features=hidden_features) | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x, x_size): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.before_add(x) | |
x = x + self.dwconv(x, x_size) | |
x = self.after_add(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (b, h, w, c) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*b, window_size, window_size, c) | |
""" | |
b, h, w, c = x.shape | |
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) | |
windows = ( | |
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) | |
) | |
return windows | |
def window_reverse(windows, window_size, h, w): | |
""" | |
Args: | |
windows: (num_windows*b, window_size, window_size, c) | |
window_size (int): Window size | |
h (int): Height of image | |
w (int): Width of image | |
Returns: | |
x: (b, h, w, c) | |
""" | |
b = int(windows.shape[0] / (h * w / window_size / window_size)) | |
x = windows.view( | |
b, h // window_size, w // window_size, window_size, window_size, -1 | |
) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) | |
return x | |
class PSA(nn.Module): | |
r"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__( | |
self, | |
dim, | |
window_size, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.permuted_window_size = (window_size[0] // 2, window_size[1] // 2) | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros( | |
(2 * self.permuted_window_size[0] - 1) | |
* (2 * self.permuted_window_size[1] - 1), | |
num_heads, | |
) | |
) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise aligned relative position index for each token inside the window | |
coords_h = torch.arange(self.permuted_window_size[0]) | |
coords_w = torch.arange(self.permuted_window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
) # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute( | |
1, 2, 0 | |
).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += ( | |
self.permuted_window_size[0] - 1 | |
) # shift to start from 0 | |
relative_coords[:, :, 1] += self.permuted_window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.permuted_window_size[1] - 1 | |
aligned_relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
aligned_relative_position_index = ( | |
aligned_relative_position_index.reshape( | |
self.permuted_window_size[0], | |
self.permuted_window_size[1], | |
1, | |
1, | |
self.permuted_window_size[0] * self.permuted_window_size[1], | |
) | |
.repeat(1, 1, 2, 2, 1) | |
.permute(0, 2, 1, 3, 4) | |
.reshape( | |
4 * self.permuted_window_size[0] * self.permuted_window_size[1], | |
self.permuted_window_size[0] * self.permuted_window_size[1], | |
) | |
) # FN*FN,WN*WN | |
self.register_buffer( | |
"aligned_relative_position_index", aligned_relative_position_index | |
) | |
# compresses the channel dimension of KV | |
self.kv = nn.Linear(dim, dim // 2, bias=qkv_bias) | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=0.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*b, n, c) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
b_, n, c = x.shape | |
# compress the channel dimension of KV :(num_windows*b, num_heads, n//4, c//num_heads) | |
kv = ( | |
self.kv(x) | |
.reshape( | |
b_, | |
self.permuted_window_size[0], | |
2, | |
self.permuted_window_size[1], | |
2, | |
2, | |
c // 4, | |
) | |
.permute(0, 1, 3, 5, 2, 4, 6) | |
.reshape(b_, n // 4, 2, self.num_heads, c // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
k, v = kv[0], kv[1] | |
# keep the channel dimension of Q: (num_windows*b, num_heads, n, c//num_heads) | |
q = ( | |
self.q(x) | |
.reshape(b_, n, 1, self.num_heads, c // self.num_heads) | |
.permute(2, 0, 3, 1, 4)[0] | |
) | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) # (num_windows*b, num_heads, n, n//4) | |
relative_position_bias = self.relative_position_bias_table[ | |
self.aligned_relative_position_index.view(-1) | |
].view( | |
self.window_size[0] * self.window_size[1], | |
self.permuted_window_size[0] * self.permuted_window_size[1], | |
-1, | |
) # (n, n//4) | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # (num_heads, n, n//4) | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nw = mask.shape[0] | |
attn = attn.view(b_ // nw, nw, self.num_heads, n, n // 4) + mask.unsqueeze( | |
1 | |
).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, n, n // 4) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(b_, n, c) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, window_size={self.permuted_window_size}, num_heads={self.num_heads}" | |
def flops(self, n): | |
# calculate flops for 1 window with token length of n | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += n * self.dim * 1.5 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * n * (self.dim // self.num_heads) * n / 4 | |
# x = (attn @ v) | |
flops += self.num_heads * n * n / 4 * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += n * self.dim * self.dim | |
return flops | |
class PSA_Block(nn.Module): | |
r"""Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
shift_size=0, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.permuted_window_size = window_size // 2 | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert ( | |
0 <= self.shift_size < self.window_size | |
), "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = PSA( | |
dim, | |
window_size=to_2tuple(self.window_size), | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ConvFFN( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
if self.shift_size > 0: | |
attn_mask = self.calculate_mask(self.input_resolution) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
# emptyModule for Power Spectrum Based Evaluation | |
self.after_norm1 = emptyModule() | |
self.after_attention = emptyModule() | |
self.residual_after_attention = emptyModule() | |
self.after_norm2 = emptyModule() | |
self.after_mlp = emptyModule() | |
self.residual_after_mlp = emptyModule() | |
def calculate_mask(self, x_size): | |
# calculate mask for original windows | |
h, w = x_size | |
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1 | |
h_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
w_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition( | |
img_mask, self.window_size | |
) # nw, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
# calculate mask for permuted windows | |
h, w = x_size | |
permuted_window_mask = torch.zeros((1, h // 2, w // 2, 1)) # 1 h w 1 | |
h_slices = ( | |
slice(0, -self.permuted_window_size), | |
slice(-self.permuted_window_size, -self.shift_size // 2), | |
slice(-self.shift_size // 2, None), | |
) | |
w_slices = ( | |
slice(0, -self.permuted_window_size), | |
slice(-self.permuted_window_size, -self.shift_size // 2), | |
slice(-self.shift_size // 2, None), | |
) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
permuted_window_mask[:, h, w, :] = cnt | |
cnt += 1 | |
permuted_windows = window_partition( | |
permuted_window_mask, self.permuted_window_size | |
) | |
permuted_windows = permuted_windows.view( | |
-1, self.permuted_window_size * self.permuted_window_size | |
) | |
# calculate attention mask | |
attn_mask = mask_windows.unsqueeze(2) - permuted_windows.unsqueeze(1) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( | |
attn_mask == 0, float(0.0) | |
) | |
return attn_mask | |
def forward(self, x, x_size): | |
h, w = x_size | |
b, _, c = x.shape | |
# assert seq_len == h * w, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = self.after_norm1(x) | |
x = x.view(b, h, w, c) | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll( | |
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) | |
) | |
else: | |
shifted_x = x | |
# partition windows | |
x_windows = window_partition( | |
shifted_x, self.window_size | |
) # nw*b, window_size, window_size, c | |
x_windows = x_windows.view( | |
-1, self.window_size * self.window_size, c | |
) # nw*b, window_size*window_size, c | |
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | |
if self.input_resolution == x_size: | |
attn_windows = self.attn( | |
x_windows, mask=self.attn_mask | |
) # nw*b, window_size*window_size, c | |
else: | |
attn_windows = self.attn( | |
x_windows, mask=self.calculate_mask(x_size).to(x.device) | |
) | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) | |
shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll( | |
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) | |
) | |
else: | |
x = shifted_x | |
x = x.view(b, h * w, c) | |
x = self.after_attention(x) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
x = self.residual_after_attention(x) | |
x = self.residual_after_mlp( | |
x | |
+ self.drop_path( | |
self.after_mlp(self.mlp(self.after_norm2(self.norm2(x)), x_size)) | |
) | |
) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | |
) | |
def flops(self): | |
flops = 0 | |
h, w = self.input_resolution | |
# norm1 | |
flops += self.dim * h * w | |
# W-MSA/SW-MSA | |
nw = h * w / self.window_size / self.window_size | |
flops += nw * self.attn.flops(self.window_size * self.window_size) | |
# mlp | |
flops += 2 * h * w * self.dim * self.dim * self.mlp_ratio | |
flops += h * w * self.dim * 25 | |
# norm2 | |
flops += self.dim * h * w | |
return flops | |
class PatchMerging(nn.Module): | |
r"""Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" | |
x: b, h*w, c | |
""" | |
h, w = self.input_resolution | |
b, seq_len, c = x.shape | |
assert seq_len == h * w, "input feature has wrong size" | |
assert h % 2 == 0 and w % 2 == 0, f"x size ({h}*{w}) are not even." | |
x = x.view(b, h, w, c) | |
x0 = x[:, 0::2, 0::2, :] # b h/2 w/2 c | |
x1 = x[:, 1::2, 0::2, :] # b h/2 w/2 c | |
x2 = x[:, 0::2, 1::2, :] # b h/2 w/2 c | |
x3 = x[:, 1::2, 1::2, :] # b h/2 w/2 c | |
x = torch.cat([x0, x1, x2, x3], -1) # b h/2 w/2 4*c | |
x = x.view(b, -1, 4 * c) # b h/2*w/2 4*c | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
def flops(self): | |
h, w = self.input_resolution | |
flops = h * w * self.dim | |
flops += (h // 2) * (w // 2) * 4 * self.dim * 2 * self.dim | |
return flops | |
class BasicLayer(nn.Module): | |
"""A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
PSA_Block( | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] | |
if isinstance(drop_path, list) | |
else drop_path, | |
norm_layer=norm_layer, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, norm_layer=norm_layer | |
) | |
else: | |
self.downsample = None | |
def forward(self, x, x_size): | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x, x_size) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
def flops(self): | |
flops = 0 | |
for blk in self.blocks: | |
flops += blk.flops() | |
if self.downsample is not None: | |
flops += self.downsample.flops() | |
return flops | |
class PSA_Group(nn.Module): | |
"""Residual Swin Transformer Block (PSA_Group). | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
img_size: Input image size. | |
patch_size: Patch size. | |
resi_connection: The convolutional block before residual connection. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
img_size=224, | |
patch_size=4, | |
resi_connection="1conv", | |
): | |
super(PSA_Group, self).__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.residual_group = BasicLayer( | |
dim=dim, | |
input_resolution=input_resolution, | |
depth=depth, | |
num_heads=num_heads, | |
window_size=window_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path, | |
norm_layer=norm_layer, | |
downsample=downsample, | |
use_checkpoint=use_checkpoint, | |
) | |
if resi_connection == "1conv": | |
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | |
elif resi_connection == "3conv": | |
# to save parameters and memory | |
self.conv = nn.Sequential( | |
nn.Conv2d(dim, dim // 4, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim, 3, 1, 1), | |
) | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=0, | |
embed_dim=dim, | |
norm_layer=None, | |
) | |
self.patch_unembed = PatchUnEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=0, | |
embed_dim=dim, | |
norm_layer=None, | |
) | |
self.before_PSA_Group_conv = emptyModule() | |
self.after_PSA_Group_conv = emptyModule() | |
self.after_PSA_Group_Residual = emptyModule() | |
def forward(self, x, x_size): | |
return self.after_PSA_Group_Residual( | |
self.after_PSA_Group_conv( | |
self.patch_embed( | |
self.conv( | |
self.patch_unembed( | |
self.before_PSA_Group_conv(self.residual_group(x, x_size)), | |
x_size, | |
) | |
) | |
) | |
) | |
+ x | |
) | |
def flops(self): | |
flops = 0 | |
flops += self.residual_group.flops() | |
h, w = self.input_resolution | |
flops += h * w * self.dim * self.dim * 9 | |
flops += self.patch_embed.flops() | |
flops += self.patch_unembed.flops() | |
return flops | |
class PatchEmbed(nn.Module): | |
r"""Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
window_size=22, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
norm_layer=None, | |
): | |
super().__init__() | |
if img_size % window_size != 0: | |
img_size = img_size + (window_size - img_size % window_size) | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1], | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
def flops(self): | |
flops = 0 | |
h, w = self.img_size | |
if self.norm is not None: | |
flops += h * w * self.embed_dim | |
return flops | |
class PatchUnEmbed(nn.Module): | |
r"""Image to Patch Unembedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
window_size=24, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
norm_layer=None, | |
): | |
super().__init__() | |
if img_size % window_size != 0: | |
img_size = img_size + (window_size - img_size % window_size) | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1], | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
def forward(self, x, x_size): | |
x = x.transpose(1, 2).view( | |
x.shape[0], self.embed_dim, x_size[0], x_size[1] | |
) # b Ph*Pw c | |
return x | |
def flops(self): | |
flops = 0 | |
return flops | |
class Upsample(nn.Sequential): | |
"""Upsample module. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat): | |
m = [] | |
if (scale & (scale - 1)) == 0: # scale = 2^n | |
for _ in range(int(math.log(scale, 2))): | |
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(2)) | |
elif scale == 3: | |
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(3)) | |
else: | |
raise ValueError( | |
f"scale {scale} is not supported. Supported scales: 2^n and 3." | |
) | |
super(Upsample, self).__init__(*m) | |
class UpsampleOneStep(nn.Sequential): | |
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) | |
Used in lightweight SR to save parameters. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): | |
self.num_feat = num_feat | |
self.input_resolution = input_resolution | |
m = [] | |
m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) | |
m.append(nn.PixelShuffle(scale)) | |
super(UpsampleOneStep, self).__init__(*m) | |
def flops(self): | |
h, w = self.input_resolution | |
flops = h * w * self.num_feat * 3 * 9 | |
return flops | |
class SRFormer(nn.Module): | |
r"""SRFormer | |
A PyTorch implement of : `SRFormer: Permuted Self-Attention for Single Image Super-Resolution`, based on Swin Transformer. | |
Args: | |
img_size (int | tuple(int)): Input image size. Default 64 | |
patch_size (int | tuple(int)): Patch size. Default: 1 | |
in_chans (int): Number of input image channels. Default: 3 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 7 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction | |
img_range: Image range. 1. or 255. | |
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None | |
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | |
""" | |
def __init__(self, state_dict): | |
super(SRFormer, self).__init__() | |
# Default | |
img_size = 64 | |
patch_size = 1 | |
in_chans = 3 | |
embed_dim = 96 | |
depths = (6, 6, 6, 6) | |
num_heads = (6, 6, 6, 6) | |
window_size = 7 | |
mlp_ratio = 4.0 | |
qkv_bias = True | |
qk_scale = None | |
drop_rate = 0.0 | |
attn_drop_rate = 0.0 | |
drop_path_rate = 0.1 | |
norm_layer = nn.LayerNorm | |
ape = False | |
patch_norm = True | |
use_checkpoint = False | |
upscale = 2 | |
img_range = 1.0 | |
upsampler = "" | |
resi_connection = "1conv" | |
self.model_arch = "SRFormer" | |
self.sub_type = "SR" | |
self.state = state_dict | |
state_keys = list(state_dict.keys()) | |
if "conv_before_upsample.0.weight" in state_keys: | |
if "conv_up1.weight" in state_keys: | |
upsampler = "nearest+conv" | |
else: | |
upsampler = "pixelshuffle" | |
elif "upsample.0.weight" in state_keys: | |
upsampler = "pixelshuffledirect" | |
else: | |
upsampler = "" | |
num_feat = ( | |
state_dict.get("conv_before_upsample.0.weight", None).shape[1] | |
if state_dict.get("conv_before_upsample.weight", None) | |
else 64 | |
) | |
num_in_ch = state_dict["conv_first.weight"].shape[1] | |
in_chans = num_in_ch | |
if "conv_last.weight" in state_keys: | |
num_out_ch = state_dict["conv_last.weight"].shape[0] | |
else: | |
num_out_ch = num_in_ch | |
upscale = 1 | |
if upsampler == "nearest+conv": | |
upsample_keys = [ | |
x for x in state_keys if "conv_up" in x and "bias" not in x | |
] | |
for upsample_key in upsample_keys: | |
upscale *= 2 | |
elif upsampler == "pixelshuffle": | |
upsample_keys = [ | |
x | |
for x in state_keys | |
if "upsample" in x and "conv" not in x and "bias" not in x | |
] | |
for upsample_key in upsample_keys: | |
shape = state_dict[upsample_key].shape[0] | |
upscale *= math.sqrt(shape // num_feat) | |
upscale = int(upscale) | |
elif upsampler == "pixelshuffledirect": | |
upscale = int( | |
math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch) | |
) | |
max_layer_num = 0 | |
max_block_num = 0 | |
for key in state_keys: | |
result = re.match( | |
r"layers.(\d*).residual_group.blocks.(\d*).norm1.weight", key | |
) | |
if result: | |
layer_num, block_num = result.groups() | |
max_layer_num = max(max_layer_num, int(layer_num)) | |
max_block_num = max(max_block_num, int(block_num)) | |
depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] | |
if ( | |
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" | |
in state_keys | |
): | |
num_heads_num = state_dict[ | |
"layers.0.residual_group.blocks.0.attn.relative_position_bias_table" | |
].shape[-1] | |
num_heads = [num_heads_num for _ in range(max_layer_num + 1)] | |
else: | |
num_heads = depths | |
embed_dim = state_dict["conv_first.weight"].shape[0] | |
mlp_ratio = float( | |
state_dict["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] | |
/ embed_dim | |
) | |
if "layers.0.conv.4.weight" in state_keys: | |
resi_connection = "3conv" | |
else: | |
resi_connection = "1conv" | |
window_size = int( | |
math.sqrt( | |
state_dict[ | |
"layers.0.residual_group.blocks.0.attn.aligned_relative_position_index" | |
].shape[0] | |
) | |
) | |
if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: | |
img_size = int( | |
( | |
math.sqrt( | |
state_dict["layers.0.residual_group.blocks.1.attn_mask"].shape[ | |
0 | |
] | |
) | |
) | |
* 16 | |
) | |
self.in_nc = num_in_ch | |
self.out_nc = num_out_ch | |
self.num_feat = num_feat | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.depths = depths | |
self.window_size = window_size | |
self.mlp_ratio = mlp_ratio | |
self.scale = upscale | |
self.upsampler = upsampler | |
self.img_size = img_size | |
self.img_range = img_range | |
self.resi_connection = resi_connection | |
self.supports_fp16 = False # Too much weirdness to support this at the moment | |
self.supports_bfp16 = True | |
self.min_size_restriction = 16 | |
num_in_ch = in_chans | |
num_out_ch = in_chans | |
num_feat = 64 | |
self.img_range = img_range | |
if in_chans == 3: | |
rgb_mean = (0.4488, 0.4371, 0.4040) | |
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | |
else: | |
self.mean = torch.zeros(1, 1, 1, 1) | |
self.upscale = upscale | |
self.upsampler = upsampler | |
self.window_size = window_size | |
# ------------------------- 1, shallow feature extraction ------------------------- # | |
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | |
# ------------------------- 2, deep feature extraction ------------------------- # | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.num_features = embed_dim | |
self.mlp_ratio = mlp_ratio | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
window_size=window_size, | |
patch_size=patch_size, | |
in_chans=embed_dim, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
) | |
num_patches = self.patch_embed.num_patches | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# merge non-overlapping patches into image | |
self.patch_unembed = PatchUnEmbed( | |
img_size=img_size, | |
window_size=window_size, | |
patch_size=patch_size, | |
in_chans=embed_dim, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
) | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, embed_dim) | |
) | |
trunc_normal_(self.absolute_pos_embed, std=0.02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
# build Permuted Self Attention Group (PSA_Group) | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = PSA_Group( | |
dim=embed_dim, | |
input_resolution=(patches_resolution[0], patches_resolution[1]), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[ | |
sum(depths[:i_layer]) : sum(depths[: i_layer + 1]) | |
], # no impact on SR results | |
norm_layer=norm_layer, | |
downsample=None, | |
use_checkpoint=use_checkpoint, | |
img_size=img_size, | |
patch_size=patch_size, | |
resi_connection=resi_connection, | |
) | |
self.layers.append(layer) | |
self.norm = norm_layer(self.num_features) | |
# build the last conv layer in deep feature extraction | |
if resi_connection == "1conv": | |
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | |
elif resi_connection == "3conv": | |
# to save parameters and memory | |
self.conv_after_body = nn.Sequential( | |
nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), | |
) | |
# ------------------------- 3, high quality image reconstruction ------------------------- # | |
if self.upsampler == "pixelshuffle": | |
# for classical SR | |
self.conv_before_upsample = nn.Sequential( | |
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) | |
) | |
self.upsample = Upsample(upscale, num_feat) | |
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
elif self.upsampler == "pixelshuffledirect": | |
# for lightweight SR (to save parameters) | |
self.upsample = UpsampleOneStep( | |
upscale, | |
embed_dim, | |
num_out_ch, | |
(patches_resolution[0], patches_resolution[1]), | |
) | |
elif self.upsampler == "nearest+conv": | |
# for real-world SR (less artifacts) | |
assert self.upscale == 4, "only support x4 now." | |
self.conv_before_upsample = nn.Sequential( | |
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) | |
) | |
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) | |
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) | |
else: | |
# for image denoising and JPEG compression artifact reduction | |
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) | |
self.apply(self._init_weights) | |
self.load_state_dict(state_dict, strict=True) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {"absolute_pos_embed"} | |
def no_weight_decay_keywords(self): | |
return {"relative_position_bias_table"} | |
def forward_features(self, x): | |
x_size = (x.shape[2], x.shape[3]) | |
x = self.patch_embed(x) | |
if self.ape: | |
x = x + self.absolute_pos_embed | |
x = self.pos_drop(x) | |
for layer in self.layers: | |
x = layer(x, x_size) | |
x = self.norm(x) # b seq_len c | |
x = self.patch_unembed(x, x_size) | |
return x | |
def check_image_size(self, x): | |
_, _, h, w = x.size() | |
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size | |
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") | |
return x | |
def forward(self, x): | |
H, W = x.shape[2:] | |
x = self.check_image_size(x) | |
self.mean = self.mean.type_as(x) | |
x = (x - self.mean) * self.img_range | |
if self.upsampler == "pixelshuffle": | |
# for classical SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.conv_before_upsample(x) | |
x = self.conv_last(self.upsample(x)) | |
elif self.upsampler == "pixelshuffledirect": | |
# for lightweight SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.upsample(x) | |
elif self.upsampler == "nearest+conv": | |
# for real-world SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.conv_before_upsample(x) | |
x = self.lrelu( | |
self.conv_up1( | |
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") | |
) | |
) | |
x = self.lrelu( | |
self.conv_up2( | |
torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") | |
) | |
) | |
x = self.conv_last(self.lrelu(self.conv_hr(x))) | |
else: | |
# for image denoising and JPEG compression artifact reduction | |
x_first = self.conv_first(x) | |
res = self.conv_after_body(self.forward_features(x_first)) + x_first | |
x = x + self.conv_last(res) | |
x = x / self.img_range + self.mean | |
return x[:, :, : H * self.upscale, : W * self.upscale] | |
def flops(self): | |
flops = 0 | |
h, w = self.patches_resolution | |
flops += h * w * 3 * self.embed_dim * 9 | |
flops += self.patch_embed.flops() | |
for layer in self.layers: | |
flops += layer.flops() | |
flops += h * w * 9 * self.embed_dim * self.embed_dim | |
flops += self.upsample.flops() | |
return flops | |