Spaces:
Runtime error
Runtime error
File size: 11,664 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
from typing import Any, Dict, Callable, Optional
import numpy as np
import torch
import diffusers
import onnxruntime as ort
import optimum.onnxruntime
initialized = False
run_olive_workflow = None
class DynamicSessionOptions(ort.SessionOptions):
config: Optional[Dict] = None
def __init__(self):
super().__init__()
self.enable_mem_pattern = False
@classmethod
def from_sess_options(cls, sess_options: ort.SessionOptions):
if isinstance(sess_options, DynamicSessionOptions):
return sess_options.copy()
return DynamicSessionOptions()
def enable_static_dims(self, config: Dict):
self.config = config
self.add_free_dimension_override_by_name("unet_sample_batch", config["hidden_batch_size"])
self.add_free_dimension_override_by_name("unet_sample_channels", 4)
self.add_free_dimension_override_by_name("unet_sample_height", config["height"] // 8)
self.add_free_dimension_override_by_name("unet_sample_width", config["width"] // 8)
self.add_free_dimension_override_by_name("unet_time_batch", 1)
self.add_free_dimension_override_by_name("unet_hidden_batch", config["hidden_batch_size"])
self.add_free_dimension_override_by_name("unet_hidden_sequence", 77)
if config["is_sdxl"] and not config["is_refiner"]:
self.add_free_dimension_override_by_name("unet_text_embeds_batch", config["hidden_batch_size"])
self.add_free_dimension_override_by_name("unet_text_embeds_size", 1280)
self.add_free_dimension_override_by_name("unet_time_ids_batch", config["hidden_batch_size"])
self.add_free_dimension_override_by_name("unet_time_ids_size", 6)
def copy(self):
sess_options = DynamicSessionOptions()
if self.config is not None:
sess_options.enable_static_dims(self.config)
return sess_options
class TorchCompatibleModule:
device = torch.device("cpu")
dtype = torch.float32
def to(self, *_, **__):
raise NotImplementedError
def type(self, *_, **__):
return self
class TemporalModule(TorchCompatibleModule):
"""
Replace the models which are not able to be moved to CPU.
"""
provider: Any
path: str
sess_options: ort.SessionOptions
def __init__(self, provider: Any, path: str, sess_options: ort.SessionOptions):
self.provider = provider
self.path = path
self.sess_options = sess_options
def to(self, *args, **kwargs):
from .utils import extract_device
device = extract_device(args, kwargs)
if device is not None and device.type != "cpu":
from .execution_providers import TORCH_DEVICE_TO_EP
provider = TORCH_DEVICE_TO_EP[device.type] if device.type in TORCH_DEVICE_TO_EP else self.provider
return OnnxRuntimeModel.load_model(self.path, provider, DynamicSessionOptions.from_sess_options(self.sess_options))
return self
class OnnxRuntimeModel(TorchCompatibleModule, diffusers.OnnxRuntimeModel):
config = {} # dummy
def named_modules(self): # dummy
return ()
def to(self, *args, **kwargs):
from modules.onnx_impl.utils import extract_device, move_inference_session
device = extract_device(args, kwargs)
if device is not None:
self.device = device
self.model = move_inference_session(self.model, device)
return self
class VAEConfig:
DEFAULTS = { "scaling_factor": 0.18215 }
config: Dict
def __init__(self, config: Dict):
self.config = config
def __getattr__(self, key):
return self.config.get(key, VAEConfig.DEFAULTS[key])
class VAE(TorchCompatibleModule):
pipeline: Any
def __init__(self, pipeline: Any):
self.pipeline = pipeline
@property
def config(self):
return VAEConfig(self.pipeline.vae_decoder.config)
@property
def device(self):
return self.pipeline.vae_decoder.device
def encode(self, sample: torch.Tensor, *_, **__):
sample_np = sample.cpu().numpy()
return [
torch.from_numpy(np.concatenate(
[self.pipeline.vae_encoder(sample=sample_np[i : i + 1])[0] for i in range(sample_np.shape[0])]
)).to(sample.device)
]
def decode(self, latent_sample: torch.Tensor, *_, **__):
latents_np = latent_sample.cpu().numpy()
return [
torch.from_numpy(np.concatenate(
[self.pipeline.vae_decoder(latent_sample=latents_np[i : i + 1])[0] for i in range(latents_np.shape[0])]
)).to(latent_sample.device)
]
def to(self, *args, **kwargs):
self.pipeline.vae_encoder = self.pipeline.vae_encoder.to(*args, **kwargs)
self.pipeline.vae_decoder = self.pipeline.vae_decoder.to(*args, **kwargs)
return self
def check_parameters_changed(p, refiner_enabled: bool):
from modules import shared, sd_models
if shared.sd_model.__class__.__name__ == "OnnxRawPipeline" or not shared.sd_model.__class__.__name__.startswith("Onnx"):
return shared.sd_model
compile_height = p.height
compile_width = p.width
if (shared.compiled_model_state is None or
shared.compiled_model_state.height != compile_height
or shared.compiled_model_state.width != compile_width
or shared.compiled_model_state.batch_size != p.batch_size):
shared.log.info("Olive: Parameter change detected")
shared.log.info("Olive: Recompiling base model")
sd_models.unload_model_weights(op='model')
sd_models.reload_model_weights(op='model')
if refiner_enabled:
shared.log.info("Olive: Recompiling refiner")
sd_models.unload_model_weights(op='refiner')
sd_models.reload_model_weights(op='refiner')
shared.compiled_model_state.height = compile_height
shared.compiled_model_state.width = compile_width
shared.compiled_model_state.batch_size = p.batch_size
return shared.sd_model
def preprocess_pipeline(p):
from modules import shared, sd_models
if "ONNX" not in shared.opts.diffusers_pipeline:
shared.log.warning(f"Unsupported pipeline for 'olive-ai' compile backend: {shared.opts.diffusers_pipeline}. You should select one of the ONNX pipelines.")
return shared.sd_model
if hasattr(shared.sd_model, "preprocess"):
shared.sd_model = shared.sd_model.preprocess(p)
if hasattr(shared.sd_refiner, "preprocess"):
if shared.opts.onnx_unload_base:
sd_models.unload_model_weights(op='model')
shared.sd_refiner = shared.sd_refiner.preprocess(p)
if shared.opts.onnx_unload_base:
sd_models.reload_model_weights(op='model')
shared.sd_model = shared.sd_model.preprocess(p)
return shared.sd_model
def ORTDiffusionModelPart_to(self, *args, **kwargs):
self.parent_model = self.parent_model.to(*args, **kwargs)
return self
def initialize_onnx():
global initialized # pylint: disable=global-statement
if initialized:
return
from installer import log, installed
from modules import devices
from modules.shared import opts
if not installed('onnx', quiet=True):
return
try: # may fail on onnx import
import onnx # pylint: disable=unused-import
from .execution_providers import ExecutionProvider, TORCH_DEVICE_TO_EP, available_execution_providers
if devices.backend == "rocm":
TORCH_DEVICE_TO_EP["cuda"] = ExecutionProvider.ROCm
from .pipelines.onnx_stable_diffusion_pipeline import OnnxStableDiffusionPipeline
from .pipelines.onnx_stable_diffusion_img2img_pipeline import OnnxStableDiffusionImg2ImgPipeline
from .pipelines.onnx_stable_diffusion_inpaint_pipeline import OnnxStableDiffusionInpaintPipeline
from .pipelines.onnx_stable_diffusion_upscale_pipeline import OnnxStableDiffusionUpscalePipeline
from .pipelines.onnx_stable_diffusion_xl_pipeline import OnnxStableDiffusionXLPipeline
from .pipelines.onnx_stable_diffusion_xl_img2img_pipeline import OnnxStableDiffusionXLImg2ImgPipeline
OnnxRuntimeModel.__module__ = 'diffusers' # OnnxRuntimeModel Hijack.
diffusers.OnnxRuntimeModel = OnnxRuntimeModel
diffusers.OnnxStableDiffusionPipeline = OnnxStableDiffusionPipeline
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["onnx-stable-diffusion"] = diffusers.OnnxStableDiffusionPipeline
diffusers.OnnxStableDiffusionImg2ImgPipeline = OnnxStableDiffusionImg2ImgPipeline
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["onnx-stable-diffusion"] = diffusers.OnnxStableDiffusionImg2ImgPipeline
diffusers.OnnxStableDiffusionInpaintPipeline = OnnxStableDiffusionInpaintPipeline
diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["onnx-stable-diffusion"] = diffusers.OnnxStableDiffusionInpaintPipeline
diffusers.OnnxStableDiffusionUpscalePipeline = OnnxStableDiffusionUpscalePipeline
diffusers.OnnxStableDiffusionXLPipeline = OnnxStableDiffusionXLPipeline
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["onnx-stable-diffusion-xl"] = diffusers.OnnxStableDiffusionXLPipeline
diffusers.OnnxStableDiffusionXLImg2ImgPipeline = OnnxStableDiffusionXLImg2ImgPipeline
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["onnx-stable-diffusion-xl"] = diffusers.OnnxStableDiffusionXLImg2ImgPipeline
diffusers.ORTStableDiffusionXLPipeline = diffusers.OnnxStableDiffusionXLPipeline # Huggingface model compatibility
diffusers.ORTStableDiffusionXLImg2ImgPipeline = diffusers.OnnxStableDiffusionXLImg2ImgPipeline
optimum.onnxruntime.modeling_diffusion._ORTDiffusionModelPart.to = ORTDiffusionModelPart_to # pylint: disable=protected-access
log.debug(f'ONNX: version={ort.__version__} provider={opts.onnx_execution_provider}, available={available_execution_providers}')
except Exception as e:
log.error(f'ONNX failed to initialize: {e}')
initialized = True
def initialize_olive():
global run_olive_workflow # pylint: disable=global-statement
from installer import installed, log
if not installed('olive-ai', quiet=True) or not installed('onnx', quiet=True):
return
import sys
import importlib
orig_sys_path = sys.path
venv_dir = os.environ.get("VENV_DIR", os.path.join(os.getcwd(), 'venv'))
try:
spec = importlib.util.find_spec('onnxruntime.transformers')
sys.path = [d for d in spec.submodule_search_locations + sys.path if sys.path[1] not in d or venv_dir in d]
from onnxruntime.transformers import convert_generation # pylint: disable=unused-import
spec = importlib.util.find_spec('olive')
sys.path = spec.submodule_search_locations + sys.path
run_olive_workflow = importlib.import_module('olive.workflows').run
except Exception as e:
run_olive_workflow = None
log.error(f'Olive: Failed to load olive-ai: {e}')
sys.path = orig_sys_path
def install_olive():
from installer import installed, install, log
if installed("olive-ai"):
return
try:
log.info('Installing Olive')
install('onnx', 'onnx', ignore=True)
install('olive-ai', 'olive-ai', ignore=True)
import olive.workflows # pylint: disable=unused-import
except Exception as e:
log.error(f'Olive: Failed to load olive-ai: {e}')
else:
log.info('Olive: Please restart webui session.')
|