File size: 8,867 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math
from typing import Tuple

import torch
from torch import Tensor

__all__ = [
    "weighted_sum",
    "weighted_subtraction",
    "tensor_sum",
    "add_difference",
    "sum_twice",
    "triple_sum",
    "euclidean_add_difference",
    "multiply_difference",
    "top_k_tensor_sum",
    "similarity_add_difference",
    "distribution_crossover",
    "ties_add_difference",
]


EPSILON = 1e-10  # Define a small constant EPSILON to prevent division by zero


def weighted_sum(a: Tensor, b: Tensor, alpha: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Basic Merge:
    alpha 0 returns Primary Model
    alpha 1 returns Secondary Model
    """
    return (1 - alpha) * a + alpha * b


def weighted_subtraction(a: Tensor, b: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    The inverse of a Weighted Sum Merge
    Returns Primary Model when alpha*beta = 0
    High values of alpha*beta are likely to break the merged model
    """
    # Adjust beta if both alpha and beta are 1.0 to avoid division by zero
    if alpha == 1.0 and beta == 1.0:
        beta -= EPSILON

    return (a - alpha * beta * b) / (1 - alpha * beta)


def tensor_sum(a: Tensor, b: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Takes a slice of Secondary Model and pastes it into Primary Model
    Alpha sets the width of the slice
    Beta sets the start point of the slice
    ie Alpha = 0.5 Beta = 0.25 is (ABBA) Alpha = 0.25 Beta = 0 is (BAAA)
    """
    if alpha + beta <= 1:
        tt = a.clone()
        talphas = int(a.shape[0] * beta)
        talphae = int(a.shape[0] * (alpha + beta))
        tt[talphas:talphae] = b[talphas:talphae].clone()
    else:
        talphas = int(a.shape[0] * (alpha + beta - 1))
        talphae = int(a.shape[0] * beta)
        tt = b.clone()
        tt[talphas:talphae] = a[talphas:talphae].clone()
    return tt


def add_difference(a: Tensor, b: Tensor, c: Tensor, alpha: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Classic Add Difference Merge
    """
    return a + alpha * (b - c)


def sum_twice(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Stacked Basic Merge:
    Equivalent to Merging Primary and Secondary @ alpha
    Then merging the result with Tertiary @ beta
    """
    return (1 - beta) * ((1 - alpha) * a + alpha * b) + beta * c


def triple_sum(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Weights Secondary and Tertiary at alpha and beta respectively
    Fills in the rest with Primary
    Expect odd results if alpha + beta > 1 as Primary will be merged with a negative ratio
    """
    return (1 - alpha - beta) * a + alpha * b + beta * c


def euclidean_add_difference(a: Tensor, b: Tensor, c: Tensor, alpha: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Subtract Primary and Secondary from Tertiary
    Compare the remainders via Euclidean distance
    Add to Tertiary
    Note: Slow
    """
    a_diff = a.float() - c.float()
    b_diff = b.float() - c.float()
    a_diff = torch.nan_to_num(a_diff / torch.linalg.norm(a_diff))
    b_diff = torch.nan_to_num(b_diff / torch.linalg.norm(b_diff))

    distance = (1 - alpha) * a_diff**2 + alpha * b_diff**2
    distance = torch.sqrt(distance)
    sum_diff = weighted_sum(a.float(), b.float(), alpha) - c.float()
    distance = torch.copysign(distance, sum_diff)

    target_norm = torch.linalg.norm(sum_diff)
    return c + distance / torch.linalg.norm(distance) * target_norm


def multiply_difference(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Similar to Add Difference but with geometric mean instead of arithmatic mean
    """
    diff_a = torch.pow(torch.abs(a.float() - c), (1 - alpha))
    diff_b = torch.pow(torch.abs(b.float() - c), alpha)
    difference = torch.copysign(diff_a * diff_b, weighted_sum(a, b, beta) - c)
    return c + difference.to(c.dtype)


def top_k_tensor_sum(a: Tensor, b: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Redistributes the largest weights of Secondary Model into Primary Model
    """
    a_flat = torch.flatten(a)
    a_dist = torch.msort(a_flat)
    b_indices = torch.argsort(torch.flatten(b), stable=True)
    redist_indices = torch.argsort(b_indices)

    start_i, end_i, region_is_inverted = ratio_to_region(alpha, beta, torch.numel(a))
    start_top_k = kth_abs_value(a_dist, start_i)
    end_top_k = kth_abs_value(a_dist, end_i)

    indices_mask = (start_top_k < torch.abs(a_dist)) & (torch.abs(a_dist) <= end_top_k)
    if region_is_inverted:
        indices_mask = ~indices_mask
    indices_mask = torch.gather(indices_mask.float(), 0, redist_indices)

    a_redist = torch.gather(a_dist, 0, redist_indices)
    a_redist = (1 - indices_mask) * a_flat + indices_mask * a_redist
    return a_redist.reshape_as(a)


def kth_abs_value(a: Tensor, k: int) -> Tensor:
    if k <= 0:
        return torch.tensor(-1, device=a.device)
    else:
        return torch.kthvalue(torch.abs(a.float()), k)[0]


def ratio_to_region(width: float, offset: float, n: int) -> Tuple[int, int, bool]:
    if width < 0:
        offset += width
        width = -width
    width = min(width, 1)

    if offset < 0:
        offset = 1 + offset - int(offset)
    offset = math.fmod(offset, 1.0)

    if width + offset <= 1:
        inverted = False
        start = offset * n
        end = (width + offset) * n
    else:
        inverted = True
        start = (width + offset - 1) * n
        end = offset * n

    return round(start), round(end), inverted


def similarity_add_difference(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    Weighted Sum where A and B are similar and Add Difference where A and B are dissimilar
    """
    threshold = torch.maximum(torch.abs(a), torch.abs(b))
    similarity = ((a * b / threshold**2) + 1) / 2
    similarity = torch.nan_to_num(similarity * beta, nan=beta)

    ab_diff = a + alpha * (b - c)
    ab_sum = (1 - alpha / 2) * a + (alpha / 2) * b
    return (1 - similarity) * ab_diff + similarity * ab_sum


def distribution_crossover(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs):  # pylint: disable=unused-argument
    """
    From the creator:
    It's Primary high-passed + Secondary low-passed. Takes the fourrier transform of the weights of
    Primary and Secondary when ordered with respect to Tertiary. Split the frequency domain
    using a linear function. Alpha is the split frequency and Beta is the inclination of the line.
    add everything under the line as the contribution of Primary and everything over the line as the contribution of Secondary
    """
    if a.shape == ():
        return alpha * a + (1 - alpha) * b

    c_indices = torch.argsort(torch.flatten(c))
    a_dist = torch.gather(torch.flatten(a), 0, c_indices)
    b_dist = torch.gather(torch.flatten(b), 0, c_indices)

    a_dft = torch.fft.rfft(a_dist.float())
    b_dft = torch.fft.rfft(b_dist.float())

    dft_filter = torch.arange(0, torch.numel(a_dft), device=a_dft.device).float()
    dft_filter /= torch.numel(a_dft)
    if beta > EPSILON:
        dft_filter = (dft_filter - alpha) / beta + 1 / 2
        dft_filter = torch.clamp(dft_filter, 0.0, 1.0)
    else:
        dft_filter = (dft_filter >= alpha).float()

    x_dft = (1 - dft_filter) * a_dft + dft_filter * b_dft
    x_dist = torch.fft.irfft(x_dft, a_dist.shape[0])
    x_values = torch.gather(x_dist, 0, torch.argsort(c_indices))
    return x_values.reshape_as(a)


def ties_add_difference(a: Tensor, b: Tensor, c: Tensor, alpha: float, beta: float, **kwargs) -> Tensor:  # pylint: disable=unused-argument
    """
    An implementation of arXiv:2306.01708
    """
    deltas = []
    signs = []
    for m in [a, b]:
        deltas.append(filter_top_k(m - c, beta))
        signs.append(torch.sign(deltas[-1]))

    signs = torch.stack(signs, dim=0)
    final_sign = torch.sign(torch.sum(signs, dim=0))
    delta_filters = (signs == final_sign).float()

    res = torch.zeros_like(c, device=c.device)
    for delta_filter, delta in zip(delta_filters, deltas):
        res += delta_filter * delta

    param_count = torch.sum(delta_filters, dim=0)
    return c + alpha * torch.nan_to_num(res / param_count)


def filter_top_k(a: Tensor, k: float):
    k = max(int((1 - k) * torch.numel(a)), 1)
    k_value, _ = torch.kthvalue(torch.abs(a.flatten()).float(), k)
    top_k_filter = (torch.abs(a) >= k_value).float()
    return a * top_k_filter