Spaces:
Runtime error
Runtime error
File size: 13,846 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import os
import itertools # SBM Batch frames
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops, UnidentifiedImageError
import modules.scripts
from modules import shared, processing, images
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.ui import plaintext_to_html
from modules.memstats import memory_stats
debug = shared.log.trace if os.environ.get('SD_PROCESS_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: PROCESS')
def process_batch(p, input_files, input_dir, output_dir, inpaint_mask_dir, args):
shared.log.debug(f'batch: {input_files}|{input_dir}|{output_dir}|{inpaint_mask_dir}')
processing.fix_seed(p)
if input_files is not None and len(input_files) > 0:
image_files = [f.name for f in input_files]
else:
if not os.path.isdir(input_dir):
shared.log.error(f"Process batch: directory not found: {input_dir}")
return
image_files = os.listdir(input_dir)
image_files = [os.path.join(input_dir, f) for f in image_files]
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = os.listdir(inpaint_mask_dir)
inpaint_masks = [os.path.join(inpaint_mask_dir, f) for f in inpaint_masks]
is_inpaint_batch = len(inpaint_masks) > 0
if is_inpaint_batch:
shared.log.info(f"Process batch: inpaint batch masks={len(inpaint_masks)}")
save_normally = output_dir == ''
p.do_not_save_grid = True
p.do_not_save_samples = not save_normally
shared.state.job_count = len(image_files) * p.n_iter
if shared.opts.batch_frame_mode: # SBM Frame mode is on, process each image in batch with same seed
window_size = p.batch_size
btcrept = 1
p.seed = [p.seed] * window_size # SBM MONKEYPATCH: Need to change processing to support a fixed seed value.
p.subseed = [p.subseed] * window_size # SBM MONKEYPATCH
shared.log.info(f"Process batch: inputs={len(image_files)} parallel={window_size} outputs={p.n_iter} per input ")
else: # SBM Frame mode is off, standard operation of repeating same images with sequential seed.
window_size = 1
btcrept = p.batch_size
shared.log.info(f"Process batch: inputs={len(image_files)} outputs={p.n_iter * p.batch_size} per input")
for i in range(0, len(image_files), window_size):
if shared.state.skipped:
shared.state.skipped = False
if shared.state.interrupted:
break
batch_image_files = image_files[i:i+window_size]
batch_images = []
for image_file in batch_image_files:
try:
img = Image.open(image_file)
if p.scale_by != 1:
p.width = int(img.width * p.scale_by)
p.height = int(img.height * p.scale_by)
except UnidentifiedImageError as e:
shared.log.error(f"Image error: {e}")
continue
img = ImageOps.exif_transpose(img)
batch_images.append(img)
batch_images = batch_images * btcrept # Standard mode sends the same image per batchsize.
p.init_images = batch_images
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
batch_mask_images = []
for image_file in batch_image_files:
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image_file))
# if not found use first one ("same mask for all images" use-case)
if mask_image_path not in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
batch_mask_images.append(mask_image)
batch_mask_images = batch_mask_images * btcrept
p.image_mask = batch_mask_images
batch_image_files = batch_image_files * btcrept # List used for naming later.
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = processing.process_images(p)
for n, (image, image_file) in enumerate(itertools.zip_longest(proc.images,batch_image_files)):
basename = ''
if shared.opts.use_original_name_batch:
forced_filename, ext = os.path.splitext(os.path.basename(image_file))
else:
forced_filename = None
ext = shared.opts.samples_format
if len(proc.images) > 1:
basename = f'{n + i}' if shared.opts.batch_frame_mode else f'{n}'
else:
basename = ''
if output_dir == '':
output_dir = shared.opts.outdir_img2img_samples
if not save_normally:
os.makedirs(output_dir, exist_ok=True)
geninfo, items = images.read_info_from_image(image)
for k, v in items.items():
image.info[k] = v
images.save_image(image, path=output_dir, basename=basename, seed=None, prompt=None, extension=ext, info=geninfo, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=image.info, forced_filename=forced_filename)
shared.log.debug(f'Processed: images={len(batch_image_files)} memory={memory_stats()} batch')
def img2img(id_task: str, mode: int,
prompt, negative_prompt, prompt_styles,
init_img,
sketch,
init_img_with_mask,
inpaint_color_sketch,
inpaint_color_sketch_orig,
init_img_inpaint,
init_mask_inpaint,
steps,
sampler_index,
mask_blur, mask_alpha,
inpainting_fill,
full_quality, restore_faces, tiling,
n_iter, batch_size,
cfg_scale, image_cfg_scale,
diffusers_guidance_rescale,
sag_scale,
cfg_end,
refiner_start,
clip_skip,
denoising_strength,
seed, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
selected_scale_tab,
height, width,
scale_by,
resize_mode, resize_name,
inpaint_full_res, inpaint_full_res_padding, inpainting_mask_invert,
img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir,
hdr_mode, hdr_brightness, hdr_color, hdr_sharpen, hdr_clamp, hdr_boundary, hdr_threshold, hdr_maximize, hdr_max_center, hdr_max_boundry, hdr_color_picker, hdr_tint_ratio,
override_settings_texts,
*args): # pylint: disable=unused-argument
if shared.sd_model is None:
shared.log.warning('Model not loaded')
return [], '', '', 'Error: model not loaded'
debug(f'img2img: id_task={id_task}|mode={mode}|prompt={prompt}|negative_prompt={negative_prompt}|prompt_styles={prompt_styles}|init_img={init_img}|sketch={sketch}|init_img_with_mask={init_img_with_mask}|inpaint_color_sketch={inpaint_color_sketch}|inpaint_color_sketch_orig={inpaint_color_sketch_orig}|init_img_inpaint={init_img_inpaint}|init_mask_inpaint={init_mask_inpaint}|steps={steps}|sampler_index={sampler_index}||mask_blur={mask_blur}|mask_alpha={mask_alpha}|inpainting_fill={inpainting_fill}|full_quality={full_quality}|restore_faces={restore_faces}|tiling={tiling}|n_iter={n_iter}|batch_size={batch_size}|cfg_scale={cfg_scale}|image_cfg_scale={image_cfg_scale}|clip_skip={clip_skip}|denoising_strength={denoising_strength}|seed={seed}|subseed{subseed}|subseed_strength={subseed_strength}|seed_resize_from_h={seed_resize_from_h}|seed_resize_from_w={seed_resize_from_w}|selected_scale_tab={selected_scale_tab}|height={height}|width={width}|scale_by={scale_by}|resize_mode={resize_mode}|resize_name={resize_name}|inpaint_full_res={inpaint_full_res}|inpaint_full_res_padding={inpaint_full_res_padding}|inpainting_mask_invert={inpainting_mask_invert}|img2img_batch_files={img2img_batch_files}|img2img_batch_input_dir={img2img_batch_input_dir}|img2img_batch_output_dir={img2img_batch_output_dir}|img2img_batch_inpaint_mask_dir={img2img_batch_inpaint_mask_dir}|override_settings_texts={override_settings_texts}')
if mode == 5:
if img2img_batch_files is None or len(img2img_batch_files) == 0:
shared.log.debug('Init bactch images not set')
elif init_img:
shared.log.debug('Init image not set')
if sampler_index is None:
sampler_index = 0
override_settings = create_override_settings_dict(override_settings_texts)
if mode == 0: # img2img
if init_img is None:
return [], '', '', 'Error: init image not provided'
image = init_img.convert("RGB")
mask = None
elif mode == 1: # img2img sketch
if sketch is None:
return [], '', '', 'Error: sketch image not provided'
image = sketch.convert("RGB")
mask = None
elif mode == 2: # inpaint
if init_img_with_mask is None:
return [], '', '', 'Error: init image with mask not provided'
image = init_img_with_mask["image"]
mask = init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert("RGB")
elif mode == 3: # inpaint sketch
if inpaint_color_sketch is None:
return [], '', '', 'Error: color sketch image not provided'
image = inpaint_color_sketch
orig = inpaint_color_sketch_orig or inpaint_color_sketch
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray((255.0 * pred).astype(np.uint8), "L")
mask = ImageEnhance.Brightness(mask).enhance(mask_alpha)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
elif mode == 4: # inpaint upload mask
if init_img_inpaint is None:
return [], '', '', 'Error: inpaint image not provided'
image = init_img_inpaint
mask = init_mask_inpaint
else:
shared.log.error(f'Image processing unknown mode: {mode}')
image = None
mask = None
if image is not None:
image = ImageOps.exif_transpose(image)
if selected_scale_tab == 1 and resize_mode != 0:
width = int(image.width * scale_by)
height = int(image.height * scale_by)
p = processing.StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=shared.opts.outdir_samples or shared.opts.outdir_img2img_samples,
outpath_grids=shared.opts.outdir_grids or shared.opts.outdir_img2img_grids,
prompt=prompt,
negative_prompt=negative_prompt,
styles=prompt_styles,
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=True,
sampler_name = processing.get_sampler_name(sampler_index, img=True),
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
cfg_end=cfg_end,
clip_skip=clip_skip,
width=width,
height=height,
full_quality=full_quality,
restore_faces=restore_faces,
tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
resize_name=resize_name,
denoising_strength=denoising_strength,
image_cfg_scale=image_cfg_scale,
diffusers_guidance_rescale=diffusers_guidance_rescale,
sag_scale=sag_scale,
refiner_start=refiner_start,
inpaint_full_res=inpaint_full_res != 0,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert,
hdr_mode=hdr_mode, hdr_brightness=hdr_brightness, hdr_color=hdr_color, hdr_sharpen=hdr_sharpen, hdr_clamp=hdr_clamp,
hdr_boundary=hdr_boundary, hdr_threshold=hdr_threshold, hdr_maximize=hdr_maximize, hdr_max_center=hdr_max_center, hdr_max_boundry=hdr_max_boundry, hdr_color_picker=hdr_color_picker, hdr_tint_ratio=hdr_tint_ratio,
override_settings=override_settings,
)
if selected_scale_tab == 1 and resize_mode != 0:
p.scale_by = scale_by
p.scripts = modules.scripts.scripts_img2img
p.script_args = args
if mask:
p.extra_generation_params["Mask blur"] = mask_blur
p.extra_generation_params["Mask alpha"] = mask_alpha
p.extra_generation_params["Mask invert"] = inpainting_mask_invert
p.extra_generation_params["Mask content"] = inpainting_fill
p.extra_generation_params["Mask area"] = inpaint_full_res
p.extra_generation_params["Mask padding"] = inpaint_full_res_padding
p.is_batch = mode == 5
if p.is_batch:
process_batch(p, img2img_batch_files, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)
processed = processing.Processed(p, [], p.seed, "")
else:
processed = modules.scripts.scripts_img2img.run(p, *args)
if processed is None:
processed = processing.process_images(p)
p.close()
generation_info_js = processed.js() if processed is not None else ''
if processed is None:
return [], generation_info_js, '', 'Error: no images'
return processed.images, generation_info_js, processed.info, plaintext_to_html(processed.comments)
|