File size: 6,546 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import time
from typing import Union
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
from modules.shared import log, opts, listdir
from modules import errors, sd_models
from modules.control.units.xs_model import ControlNetXSModel
from modules.control.units.xs_pipe import StableDiffusionControlNetXSPipeline, StableDiffusionXLControlNetXSPipeline
from modules.control.units import detect


what = 'ControlNet-XS'
debug = log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: CONTROL')
predefined_sd15 = {
}
predefined_sdxl = {
    'Canny': 'UmerHA/ConrolNetXS-SDXL-canny',
    'Depth': 'UmerHA/ConrolNetXS-SDXL-depth',
}
models = {}
all_models = {}
all_models.update(predefined_sd15)
all_models.update(predefined_sdxl)
cache_dir = 'models/control/xs'


def find_models():
    path = os.path.join(opts.control_dir, 'xs')
    files = listdir(path)
    files = [f for f in files if f.endswith('.safetensors')]
    downloaded_models = {}
    for f in files:
        basename = os.path.splitext(os.path.relpath(f, path))[0]
        downloaded_models[basename] = os.path.join(path, f)
    all_models.update(downloaded_models)
    return downloaded_models


def list_models(refresh=False):
    global models # pylint: disable=global-statement
    import modules.shared
    if not refresh and len(models) > 0:
        return models
    models = {}
    if modules.shared.sd_model_type == 'none':
        models = ['None']
    elif modules.shared.sd_model_type == 'sdxl':
        models = ['None'] + sorted(predefined_sdxl) + sorted(find_models())
    elif modules.shared.sd_model_type == 'sd':
        models = ['None'] + sorted(predefined_sd15) + sorted(find_models())
    else:
        log.error(f'Control {what} model list failed: unknown model type')
        models = ['None'] + sorted(predefined_sd15) + sorted(predefined_sdxl) + sorted(find_models())
    debug(f'Control list {what}: path={cache_dir} models={models}')
    return models


class ControlNetXS():
    def __init__(self, model_id: str = None, device = None, dtype = None, load_config = None):
        self.model: ControlNetXSModel = None
        self.model_id: str = model_id
        self.device = device
        self.dtype = dtype
        self.load_config = { 'cache_dir': cache_dir, 'learn_embedding': True }
        if load_config is not None:
            self.load_config.update(load_config)
        if model_id is not None:
            self.load()

    def reset(self):
        if self.model is not None:
            debug(f'Control {what} model unloaded')
        self.model = None
        self.model_id = None

    def load(self, model_id: str = None, time_embedding_mix: float = 0.0) -> str:
        try:
            t0 = time.time()
            model_id = model_id or self.model_id
            if model_id is None or model_id == 'None':
                self.reset()
                return
            model_path = all_models[model_id]
            if model_path == '':
                return
            if model_path is None:
                log.error(f'Control {what} model load failed: id="{model_id}" error=unknown model id')
                return
            self.load_config['time_embedding_mix'] = time_embedding_mix
            log.debug(f'Control {what} model loading: id="{model_id}" path="{model_path}" {self.load_config}')
            if model_path.endswith('.safetensors'):
                self.model = ControlNetXSModel.from_single_file(model_path, **self.load_config)
            else:
                self.model = ControlNetXSModel.from_pretrained(model_path, **self.load_config)
            if self.device is not None:
                self.model.to(self.device)
            if self.dtype is not None:
                self.model.to(self.dtype)
            t1 = time.time()
            self.model_id = model_id
            log.debug(f'Control {what} model loaded: id="{model_id}" path="{model_path}" time={t1-t0:.2f}')
            return f'{what} loaded model: {model_id}'
        except Exception as e:
            log.error(f'Control {what} model load failed: id="{model_id}" error={e}')
            errors.display(e, f'Control {what} load')
            return f'{what} failed to load model: {model_id}'


class ControlNetXSPipeline():
    def __init__(self, controlnet: Union[ControlNetXSModel, list[ControlNetXSModel]], pipeline: Union[StableDiffusionXLPipeline, StableDiffusionPipeline], dtype = None):
        t0 = time.time()
        self.orig_pipeline = pipeline
        self.pipeline = None
        if pipeline is None:
            log.error(f'Control {what} pipeline: model not loaded')
            return
        if detect.is_sdxl(pipeline):
            self.pipeline = StableDiffusionXLControlNetXSPipeline(
                vae=pipeline.vae,
                text_encoder=pipeline.text_encoder,
                text_encoder_2=pipeline.text_encoder_2,
                tokenizer=pipeline.tokenizer,
                tokenizer_2=pipeline.tokenizer_2,
                unet=pipeline.unet,
                scheduler=pipeline.scheduler,
                # feature_extractor=getattr(pipeline, 'feature_extractor', None),
                controlnet=controlnet, # can be a list
            )
            sd_models.move_model(self.pipeline, pipeline.device)
        elif detect.is_sd15(pipeline):
            self.pipeline = StableDiffusionControlNetXSPipeline(
                vae=pipeline.vae,
                text_encoder=pipeline.text_encoder,
                tokenizer=pipeline.tokenizer,
                unet=pipeline.unet,
                scheduler=pipeline.scheduler,
                feature_extractor=getattr(pipeline, 'feature_extractor', None),
                requires_safety_checker=False,
                safety_checker=None,
                controlnet=controlnet, # can be a list
            )
            sd_models.move_model(self.pipeline, pipeline.device)
        else:
            log.error(f'Control {what} pipeline: class={pipeline.__class__.__name__} unsupported model type')
            return
        if dtype is not None and self.pipeline is not None:
            self.pipeline = self.pipeline.to(dtype)
        t1 = time.time()
        if self.pipeline is not None:
            log.debug(f'Control {what} pipeline: class={self.pipeline.__class__.__name__} time={t1-t0:.2f}')
        else:
            log.error(f'Control {what} pipeline: not initialized')

    def restore(self):
        self.pipeline = None
        return self.orig_pipeline