File size: 15,268 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import time
import numpy as np
from PIL import Image
from modules.shared import log
from modules.errors import display
from modules import devices, images

from modules.control.proc.hed import HEDdetector
from modules.control.proc.canny import CannyDetector
from modules.control.proc.edge import EdgeDetector
from modules.control.proc.lineart import LineartDetector
from modules.control.proc.lineart_anime import LineartAnimeDetector
from modules.control.proc.pidi import PidiNetDetector
from modules.control.proc.mediapipe_face import MediapipeFaceDetector
from modules.control.proc.shuffle import ContentShuffleDetector
from modules.control.proc.leres import LeresDetector
from modules.control.proc.midas import MidasDetector
from modules.control.proc.mlsd import MLSDdetector
from modules.control.proc.normalbae import NormalBaeDetector
from modules.control.proc.openpose import OpenposeDetector
from modules.control.proc.dwpose import DWposeDetector
from modules.control.proc.segment_anything import SamDetector
from modules.control.proc.zoe import ZoeDetector
from modules.control.proc.marigold import MarigoldDetector
from modules.control.proc.dpt import DPTDetector
from modules.control.proc.glpn import GLPNDetector
from modules.control.proc.depth_anything import DepthAnythingDetector


models = {}
cache_dir = 'models/control/processors'
debug = log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: CONTROL')
config = {
    # placeholder
    'None': {},
    # pose models
    'OpenPose': {'class': OpenposeDetector, 'checkpoint': True, 'params': {'include_body': True, 'include_hand': False, 'include_face': False}},
    'DWPose': {'class': DWposeDetector, 'checkpoint': False, 'model': 'Tiny', 'params': {'min_confidence': 0.3}},
    'MediaPipe Face': {'class': MediapipeFaceDetector, 'checkpoint': False, 'params': {'max_faces': 1, 'min_confidence': 0.5}},
    # outline models
    'Canny': {'class': CannyDetector, 'checkpoint': False, 'params': {'low_threshold': 100, 'high_threshold': 200}},
    'Edge': {'class': EdgeDetector, 'checkpoint': False, 'params': {'pf': True, 'mode': 'edge'}},
    'LineArt Realistic': {'class': LineartDetector, 'checkpoint': True, 'params': {'coarse': False}},
    'LineArt Anime': {'class': LineartAnimeDetector, 'checkpoint': True, 'params': {}},
    'HED': {'class': HEDdetector, 'checkpoint': True, 'params': {'scribble': False, 'safe': False}},
    'PidiNet': {'class': PidiNetDetector, 'checkpoint': True, 'params': {'scribble': False, 'safe': False, 'apply_filter': False}},
    # depth models
    'Midas Depth Hybrid': {'class': MidasDetector, 'checkpoint': True, 'params': {'bg_th': 0.1, 'depth_and_normal': False}},
    'Leres Depth': {'class': LeresDetector, 'checkpoint': True, 'params': {'boost': False, 'thr_a':0, 'thr_b':0}},
    'Zoe Depth': {'class': ZoeDetector, 'checkpoint': True, 'params': {'gamma_corrected': False}, 'load_config': {'pretrained_model_or_path': 'halffried/gyre_zoedepth', 'filename': 'ZoeD_M12_N.safetensors', 'model_type': "zoedepth"}},
    'Marigold Depth': {'class': MarigoldDetector, 'checkpoint': True, 'params': {'denoising_steps': 10, 'ensemble_size': 10, 'processing_res': 512, 'match_input_res': True, 'color_map': 'None'}, 'load_config': {'pretrained_model_or_path': 'Bingxin/Marigold'}},
    'Normal Bae': {'class': NormalBaeDetector, 'checkpoint': True, 'params': {}},
    # segmentation models
    'SegmentAnything': {'class': SamDetector, 'checkpoint': True, 'model': 'Base', 'params': {}},
    # other models
    'MLSD': {'class': MLSDdetector, 'checkpoint': True, 'params': {'thr_v': 0.1, 'thr_d': 0.1}},
    'Shuffle': {'class': ContentShuffleDetector, 'checkpoint': False, 'params': {}},
    'DPT Depth Hybrid': {'class': DPTDetector, 'checkpoint': False, 'params': {}},
    'GLPN Depth': {'class': GLPNDetector, 'checkpoint': False, 'params': {}},
    'Depth Anything': {'class': DepthAnythingDetector, 'checkpoint': True, 'load_config': {'pretrained_model_or_path': 'LiheYoung/depth_anything_vitl14' }, 'params': { 'color_map': 'inferno' }},
    # 'Midas Depth Large': {'class': MidasDetector, 'checkpoint': True, 'params': {'bg_th': 0.1, 'depth_and_normal': False}, 'load_config': {'pretrained_model_or_path': 'Intel/dpt-large', 'model_type': "dpt_large", 'filename': ''}},
    # 'Zoe Depth Zoe': {'class': ZoeDetector, 'checkpoint': True, 'params': {}},
    # 'Zoe Depth NK': {'class': ZoeDetector, 'checkpoint': True, 'params': {}, 'load_config': {'pretrained_model_or_path': 'halffried/gyre_zoedepth', 'filename': 'ZoeD_M12_NK.safetensors', 'model_type': "zoedepth_nk"}},
}


def list_models(refresh=False):
    global models # pylint: disable=global-statement
    if not refresh and len(models) > 0:
        return models
    models = list(config)
    debug(f'Control list processors: path={cache_dir} models={models}')
    return models


def update_settings(*settings):
    debug(f'Control settings: {settings}')
    def update(what, val):
        processor_id = what[0]
        if len(what) == 2 and config[processor_id][what[1]] != val:
            config[processor_id][what[1]] = val
            config[processor_id]['dirty'] = True
            log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')
        elif len(what) == 3 and config[processor_id][what[1]][what[2]] != val:
            config[processor_id][what[1]][what[2]] = val
            config[processor_id]['dirty'] = True
            log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')
        elif len(what) == 4 and config[processor_id][what[1]][what[2]][what[3]] != val:
            config[processor_id][what[1]][what[2]][what[3]] = val
            config[processor_id]['dirty'] = True
            log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')

    update(['HED', 'params', 'scribble'], settings[0])
    update(['Midas Depth Hybrid', 'params', 'bg_th'], settings[1])
    update(['Midas Depth Hybrid', 'params', 'depth_and_normal'], settings[2])
    update(['MLSD', 'params', 'thr_v'], settings[3])
    update(['MLSD', 'params', 'thr_d'], settings[4])
    update(['OpenPose', 'params', 'include_body'], settings[5])
    update(['OpenPose', 'params', 'include_hand'], settings[6])
    update(['OpenPose', 'params', 'include_face'], settings[7])
    update(['PidiNet', 'params', 'scribble'], settings[8])
    update(['PidiNet', 'params', 'apply_filter'], settings[9])
    update(['LineArt Realistic', 'params', 'coarse'], settings[10])
    update(['Leres Depth', 'params', 'boost'], settings[11])
    update(['Leres Depth', 'params', 'thr_a'], settings[12])
    update(['Leres Depth', 'params', 'thr_b'], settings[13])
    update(['MediaPipe Face', 'params', 'max_faces'], settings[14])
    update(['MediaPipe Face', 'params', 'min_confidence'], settings[15])
    update(['Canny', 'params', 'low_threshold'], settings[16])
    update(['Canny', 'params', 'high_threshold'], settings[17])
    update(['DWPose', 'model'], settings[18])
    update(['DWPose', 'params', 'min_confidence'], settings[19])
    update(['SegmentAnything', 'model'], settings[20])
    update(['Edge', 'params', 'pf'], settings[21])
    update(['Edge', 'params', 'mode'], settings[22])
    update(['Zoe Depth', 'params', 'gamma_corrected'], settings[23])
    update(['Marigold Depth', 'params', 'color_map'], settings[24])
    update(['Marigold Depth', 'params', 'denoising_steps'], settings[25])
    update(['Marigold Depth', 'params', 'ensemble_size'], settings[26])
    update(['Depth Anything', 'params', 'color_map'], settings[27])


class Processor():
    def __init__(self, processor_id: str = None, resize = True):
        self.model = None
        self.processor_id = None
        self.override = None
        self.resize = resize
        self.reset()
        self.config(processor_id)
        if processor_id is not None:
            self.load()

    def reset(self, processor_id: str = None):
        if self.model is not None:
            debug(f'Control Processor unloaded: id="{self.processor_id}"')
        self.model = None
        self.processor_id = processor_id
        # self.override = None
        devices.torch_gc()
        self.load_config = { 'cache_dir': cache_dir }

    def config(self, processor_id = None):
        if processor_id is not None:
            self.processor_id = processor_id
        from_config = config.get(self.processor_id, {}).get('load_config', None)
        """
        if load_config is not None:
            for k, v in load_config.items():
                self.load_config[k] = v
        """
        if from_config is not None:
            for k, v in from_config.items():
                self.load_config[k] = v

    def load(self, processor_id: str = None) -> str:
        try:
            t0 = time.time()
            processor_id = processor_id or self.processor_id
            if processor_id is None or processor_id == 'None':
                self.reset()
                return ''
            if self.processor_id != processor_id:
                self.reset()
                self.config(processor_id)
            cls = config[processor_id]['class']
            log.debug(f'Control Processor loading: id="{processor_id}" class={cls.__name__}')
            debug(f'Control Processor config={self.load_config}')
            if 'DWPose' in processor_id:
                det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
                if 'Tiny' == config['DWPose']['model']:
                    pose_config = 'config/rtmpose-t_8xb64-270e_coco-ubody-wholebody-256x192.py'
                    pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-tt_ucoco.pth'
                elif 'Medium' == config['DWPose']['model']:
                    pose_config = 'config/rtmpose-m_8xb64-270e_coco-ubody-wholebody-256x192.py'
                    pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-mm_ucoco.pth'
                elif 'Large' == config['DWPose']['model']:
                    pose_config = 'config/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
                    pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.pth'
                else:
                    log.error(f'Control Processor load failed: id="{processor_id}" error=unknown model type')
                    return f'Processor failed to load: {processor_id}'
                self.model = cls(det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device="cpu")
            elif 'SegmentAnything' in processor_id:
                if 'Base' == config['SegmentAnything']['model']:
                    self.model = cls.from_pretrained(model_path = 'segments-arnaud/sam_vit_b', filename='sam_vit_b_01ec64.pth', model_type='vit_b', **self.load_config)
                elif 'Large' == config['SegmentAnything']['model']:
                    self.model = cls.from_pretrained(model_path = 'segments-arnaud/sam_vit_l', filename='sam_vit_l_0b3195.pth', model_type='vit_l', **self.load_config)
                else:
                    log.error(f'Control Processor load failed: id="{processor_id}" error=unknown model type')
                    return f'Processor failed to load: {processor_id}'
            elif config[processor_id].get('load_config', None) is not None:
                self.model = cls.from_pretrained(**self.load_config)
            elif config[processor_id]['checkpoint']:
                self.model = cls.from_pretrained("lllyasviel/Annotators", **self.load_config)
            else:
                self.model = cls() # class instance only
            t1 = time.time()
            self.processor_id = processor_id
            log.debug(f'Control Processor loaded: id="{processor_id}" class={self.model.__class__.__name__} time={t1-t0:.2f}')
            return f'Processor loaded: {processor_id}'
        except Exception as e:
            log.error(f'Control Processor load failed: id="{processor_id}" error={e}')
            display(e, 'Control Processor load')
            return f'Processor load filed: {processor_id}'

    def __call__(self, image_input: Image, mode: str = 'RGB', resize_mode: int = 0, resize_name: str = 'None', scale_tab: int = 1, scale_by: float = 1.0, local_config: dict = {}):
        if self.processor_id is None or self.processor_id == 'None':
            return self.override if self.override is not None else image_input
        if self.override is not None:
            debug(f'Control Processor: id="{self.processor_id}" override={self.override}')
            image_input = self.override
            if resize_mode != 0 and resize_name != 'None':
                if scale_tab == 1:
                    width_before, height_before = int(image_input.width * scale_by), int(image_input.height * scale_by)
                    debug(f'Control resize: op=before image={image_input} width={width_before} height={height_before} mode={resize_mode} name={resize_name}')
                    image_input = images.resize_image(resize_mode, image_input, width_before, height_before, resize_name)
        image_process = image_input
        if image_input is None:
            # log.error('Control Processor: no input')
            return image_process
        if config[self.processor_id].get('dirty', False):
            processor_id = self.processor_id
            config[processor_id].pop('dirty')
            self.reset()
            self.load(processor_id)
        if self.model is None:
            # log.error('Control Processor: model not loaded')
            return image_process
        try:
            t0 = time.time()
            kwargs = config.get(self.processor_id, {}).get('params', None)
            if kwargs:
                kwargs.update(local_config)
            if self.resize:
                image_resized = image_input.resize((512, 512), Image.Resampling.LANCZOS)
            else:
                image_resized = image_input
            with devices.inference_context():
                image_process = self.model(image_resized, **kwargs)
            if isinstance(image_process, np.ndarray):
                if np.max(image_process) < 2:
                    image_process = (255.0 * image_process).astype(np.uint8)
                image_process = Image.fromarray(image_process, 'L')
            if self.resize and image_process.size != image_input.size:
                image_process = image_process.resize(image_input.size, Image.Resampling.LANCZOS)
            t1 = time.time()
            log.debug(f'Control Processor: id="{self.processor_id}" mode={mode} args={kwargs} time={t1-t0:.2f}')
        except Exception as e:
            log.error(f'Control Processor failed: id="{self.processor_id}" error={e}')
            display(e, 'Control Processor')
        if mode != 'RGB':
            image_process = image_process.convert(mode)
        return image_process

    def preview(self):
        import modules.ui_control_helpers as helpers
        input_image = helpers.input_source
        if isinstance(input_image, list):
            input_image = input_image[0]
        debug('Control process preview')
        return self.__call__(input_image)