Spaces:
Runtime error
Runtime error
File size: 15,268 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import os
import time
import numpy as np
from PIL import Image
from modules.shared import log
from modules.errors import display
from modules import devices, images
from modules.control.proc.hed import HEDdetector
from modules.control.proc.canny import CannyDetector
from modules.control.proc.edge import EdgeDetector
from modules.control.proc.lineart import LineartDetector
from modules.control.proc.lineart_anime import LineartAnimeDetector
from modules.control.proc.pidi import PidiNetDetector
from modules.control.proc.mediapipe_face import MediapipeFaceDetector
from modules.control.proc.shuffle import ContentShuffleDetector
from modules.control.proc.leres import LeresDetector
from modules.control.proc.midas import MidasDetector
from modules.control.proc.mlsd import MLSDdetector
from modules.control.proc.normalbae import NormalBaeDetector
from modules.control.proc.openpose import OpenposeDetector
from modules.control.proc.dwpose import DWposeDetector
from modules.control.proc.segment_anything import SamDetector
from modules.control.proc.zoe import ZoeDetector
from modules.control.proc.marigold import MarigoldDetector
from modules.control.proc.dpt import DPTDetector
from modules.control.proc.glpn import GLPNDetector
from modules.control.proc.depth_anything import DepthAnythingDetector
models = {}
cache_dir = 'models/control/processors'
debug = log.trace if os.environ.get('SD_CONTROL_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: CONTROL')
config = {
# placeholder
'None': {},
# pose models
'OpenPose': {'class': OpenposeDetector, 'checkpoint': True, 'params': {'include_body': True, 'include_hand': False, 'include_face': False}},
'DWPose': {'class': DWposeDetector, 'checkpoint': False, 'model': 'Tiny', 'params': {'min_confidence': 0.3}},
'MediaPipe Face': {'class': MediapipeFaceDetector, 'checkpoint': False, 'params': {'max_faces': 1, 'min_confidence': 0.5}},
# outline models
'Canny': {'class': CannyDetector, 'checkpoint': False, 'params': {'low_threshold': 100, 'high_threshold': 200}},
'Edge': {'class': EdgeDetector, 'checkpoint': False, 'params': {'pf': True, 'mode': 'edge'}},
'LineArt Realistic': {'class': LineartDetector, 'checkpoint': True, 'params': {'coarse': False}},
'LineArt Anime': {'class': LineartAnimeDetector, 'checkpoint': True, 'params': {}},
'HED': {'class': HEDdetector, 'checkpoint': True, 'params': {'scribble': False, 'safe': False}},
'PidiNet': {'class': PidiNetDetector, 'checkpoint': True, 'params': {'scribble': False, 'safe': False, 'apply_filter': False}},
# depth models
'Midas Depth Hybrid': {'class': MidasDetector, 'checkpoint': True, 'params': {'bg_th': 0.1, 'depth_and_normal': False}},
'Leres Depth': {'class': LeresDetector, 'checkpoint': True, 'params': {'boost': False, 'thr_a':0, 'thr_b':0}},
'Zoe Depth': {'class': ZoeDetector, 'checkpoint': True, 'params': {'gamma_corrected': False}, 'load_config': {'pretrained_model_or_path': 'halffried/gyre_zoedepth', 'filename': 'ZoeD_M12_N.safetensors', 'model_type': "zoedepth"}},
'Marigold Depth': {'class': MarigoldDetector, 'checkpoint': True, 'params': {'denoising_steps': 10, 'ensemble_size': 10, 'processing_res': 512, 'match_input_res': True, 'color_map': 'None'}, 'load_config': {'pretrained_model_or_path': 'Bingxin/Marigold'}},
'Normal Bae': {'class': NormalBaeDetector, 'checkpoint': True, 'params': {}},
# segmentation models
'SegmentAnything': {'class': SamDetector, 'checkpoint': True, 'model': 'Base', 'params': {}},
# other models
'MLSD': {'class': MLSDdetector, 'checkpoint': True, 'params': {'thr_v': 0.1, 'thr_d': 0.1}},
'Shuffle': {'class': ContentShuffleDetector, 'checkpoint': False, 'params': {}},
'DPT Depth Hybrid': {'class': DPTDetector, 'checkpoint': False, 'params': {}},
'GLPN Depth': {'class': GLPNDetector, 'checkpoint': False, 'params': {}},
'Depth Anything': {'class': DepthAnythingDetector, 'checkpoint': True, 'load_config': {'pretrained_model_or_path': 'LiheYoung/depth_anything_vitl14' }, 'params': { 'color_map': 'inferno' }},
# 'Midas Depth Large': {'class': MidasDetector, 'checkpoint': True, 'params': {'bg_th': 0.1, 'depth_and_normal': False}, 'load_config': {'pretrained_model_or_path': 'Intel/dpt-large', 'model_type': "dpt_large", 'filename': ''}},
# 'Zoe Depth Zoe': {'class': ZoeDetector, 'checkpoint': True, 'params': {}},
# 'Zoe Depth NK': {'class': ZoeDetector, 'checkpoint': True, 'params': {}, 'load_config': {'pretrained_model_or_path': 'halffried/gyre_zoedepth', 'filename': 'ZoeD_M12_NK.safetensors', 'model_type': "zoedepth_nk"}},
}
def list_models(refresh=False):
global models # pylint: disable=global-statement
if not refresh and len(models) > 0:
return models
models = list(config)
debug(f'Control list processors: path={cache_dir} models={models}')
return models
def update_settings(*settings):
debug(f'Control settings: {settings}')
def update(what, val):
processor_id = what[0]
if len(what) == 2 and config[processor_id][what[1]] != val:
config[processor_id][what[1]] = val
config[processor_id]['dirty'] = True
log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')
elif len(what) == 3 and config[processor_id][what[1]][what[2]] != val:
config[processor_id][what[1]][what[2]] = val
config[processor_id]['dirty'] = True
log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')
elif len(what) == 4 and config[processor_id][what[1]][what[2]][what[3]] != val:
config[processor_id][what[1]][what[2]][what[3]] = val
config[processor_id]['dirty'] = True
log.debug(f'Control settings: id="{processor_id}" {what[-1]}={val}')
update(['HED', 'params', 'scribble'], settings[0])
update(['Midas Depth Hybrid', 'params', 'bg_th'], settings[1])
update(['Midas Depth Hybrid', 'params', 'depth_and_normal'], settings[2])
update(['MLSD', 'params', 'thr_v'], settings[3])
update(['MLSD', 'params', 'thr_d'], settings[4])
update(['OpenPose', 'params', 'include_body'], settings[5])
update(['OpenPose', 'params', 'include_hand'], settings[6])
update(['OpenPose', 'params', 'include_face'], settings[7])
update(['PidiNet', 'params', 'scribble'], settings[8])
update(['PidiNet', 'params', 'apply_filter'], settings[9])
update(['LineArt Realistic', 'params', 'coarse'], settings[10])
update(['Leres Depth', 'params', 'boost'], settings[11])
update(['Leres Depth', 'params', 'thr_a'], settings[12])
update(['Leres Depth', 'params', 'thr_b'], settings[13])
update(['MediaPipe Face', 'params', 'max_faces'], settings[14])
update(['MediaPipe Face', 'params', 'min_confidence'], settings[15])
update(['Canny', 'params', 'low_threshold'], settings[16])
update(['Canny', 'params', 'high_threshold'], settings[17])
update(['DWPose', 'model'], settings[18])
update(['DWPose', 'params', 'min_confidence'], settings[19])
update(['SegmentAnything', 'model'], settings[20])
update(['Edge', 'params', 'pf'], settings[21])
update(['Edge', 'params', 'mode'], settings[22])
update(['Zoe Depth', 'params', 'gamma_corrected'], settings[23])
update(['Marigold Depth', 'params', 'color_map'], settings[24])
update(['Marigold Depth', 'params', 'denoising_steps'], settings[25])
update(['Marigold Depth', 'params', 'ensemble_size'], settings[26])
update(['Depth Anything', 'params', 'color_map'], settings[27])
class Processor():
def __init__(self, processor_id: str = None, resize = True):
self.model = None
self.processor_id = None
self.override = None
self.resize = resize
self.reset()
self.config(processor_id)
if processor_id is not None:
self.load()
def reset(self, processor_id: str = None):
if self.model is not None:
debug(f'Control Processor unloaded: id="{self.processor_id}"')
self.model = None
self.processor_id = processor_id
# self.override = None
devices.torch_gc()
self.load_config = { 'cache_dir': cache_dir }
def config(self, processor_id = None):
if processor_id is not None:
self.processor_id = processor_id
from_config = config.get(self.processor_id, {}).get('load_config', None)
"""
if load_config is not None:
for k, v in load_config.items():
self.load_config[k] = v
"""
if from_config is not None:
for k, v in from_config.items():
self.load_config[k] = v
def load(self, processor_id: str = None) -> str:
try:
t0 = time.time()
processor_id = processor_id or self.processor_id
if processor_id is None or processor_id == 'None':
self.reset()
return ''
if self.processor_id != processor_id:
self.reset()
self.config(processor_id)
cls = config[processor_id]['class']
log.debug(f'Control Processor loading: id="{processor_id}" class={cls.__name__}')
debug(f'Control Processor config={self.load_config}')
if 'DWPose' in processor_id:
det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
if 'Tiny' == config['DWPose']['model']:
pose_config = 'config/rtmpose-t_8xb64-270e_coco-ubody-wholebody-256x192.py'
pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-tt_ucoco.pth'
elif 'Medium' == config['DWPose']['model']:
pose_config = 'config/rtmpose-m_8xb64-270e_coco-ubody-wholebody-256x192.py'
pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-mm_ucoco.pth'
elif 'Large' == config['DWPose']['model']:
pose_config = 'config/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
pose_ckpt = 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.pth'
else:
log.error(f'Control Processor load failed: id="{processor_id}" error=unknown model type')
return f'Processor failed to load: {processor_id}'
self.model = cls(det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device="cpu")
elif 'SegmentAnything' in processor_id:
if 'Base' == config['SegmentAnything']['model']:
self.model = cls.from_pretrained(model_path = 'segments-arnaud/sam_vit_b', filename='sam_vit_b_01ec64.pth', model_type='vit_b', **self.load_config)
elif 'Large' == config['SegmentAnything']['model']:
self.model = cls.from_pretrained(model_path = 'segments-arnaud/sam_vit_l', filename='sam_vit_l_0b3195.pth', model_type='vit_l', **self.load_config)
else:
log.error(f'Control Processor load failed: id="{processor_id}" error=unknown model type')
return f'Processor failed to load: {processor_id}'
elif config[processor_id].get('load_config', None) is not None:
self.model = cls.from_pretrained(**self.load_config)
elif config[processor_id]['checkpoint']:
self.model = cls.from_pretrained("lllyasviel/Annotators", **self.load_config)
else:
self.model = cls() # class instance only
t1 = time.time()
self.processor_id = processor_id
log.debug(f'Control Processor loaded: id="{processor_id}" class={self.model.__class__.__name__} time={t1-t0:.2f}')
return f'Processor loaded: {processor_id}'
except Exception as e:
log.error(f'Control Processor load failed: id="{processor_id}" error={e}')
display(e, 'Control Processor load')
return f'Processor load filed: {processor_id}'
def __call__(self, image_input: Image, mode: str = 'RGB', resize_mode: int = 0, resize_name: str = 'None', scale_tab: int = 1, scale_by: float = 1.0, local_config: dict = {}):
if self.processor_id is None or self.processor_id == 'None':
return self.override if self.override is not None else image_input
if self.override is not None:
debug(f'Control Processor: id="{self.processor_id}" override={self.override}')
image_input = self.override
if resize_mode != 0 and resize_name != 'None':
if scale_tab == 1:
width_before, height_before = int(image_input.width * scale_by), int(image_input.height * scale_by)
debug(f'Control resize: op=before image={image_input} width={width_before} height={height_before} mode={resize_mode} name={resize_name}')
image_input = images.resize_image(resize_mode, image_input, width_before, height_before, resize_name)
image_process = image_input
if image_input is None:
# log.error('Control Processor: no input')
return image_process
if config[self.processor_id].get('dirty', False):
processor_id = self.processor_id
config[processor_id].pop('dirty')
self.reset()
self.load(processor_id)
if self.model is None:
# log.error('Control Processor: model not loaded')
return image_process
try:
t0 = time.time()
kwargs = config.get(self.processor_id, {}).get('params', None)
if kwargs:
kwargs.update(local_config)
if self.resize:
image_resized = image_input.resize((512, 512), Image.Resampling.LANCZOS)
else:
image_resized = image_input
with devices.inference_context():
image_process = self.model(image_resized, **kwargs)
if isinstance(image_process, np.ndarray):
if np.max(image_process) < 2:
image_process = (255.0 * image_process).astype(np.uint8)
image_process = Image.fromarray(image_process, 'L')
if self.resize and image_process.size != image_input.size:
image_process = image_process.resize(image_input.size, Image.Resampling.LANCZOS)
t1 = time.time()
log.debug(f'Control Processor: id="{self.processor_id}" mode={mode} args={kwargs} time={t1-t0:.2f}')
except Exception as e:
log.error(f'Control Processor failed: id="{self.processor_id}" error={e}')
display(e, 'Control Processor')
if mode != 'RGB':
image_process = image_process.convert(mode)
return image_process
def preview(self):
import modules.ui_control_helpers as helpers
input_image = helpers.input_source
if isinstance(input_image, list):
input_image = input_image[0]
debug('Control process preview')
return self.__call__(input_image)
|