File size: 2,482 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from modules import devices
from modules.shared import opts
from modules.control.util import HWC3, resize_image
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
from .utils import pred_lines


class MLSDdetector:
    def __init__(self, model):
        self.model = model

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None):
        if pretrained_model_or_path == "lllyasviel/ControlNet":
            filename = filename or "annotator/ckpts/mlsd_large_512_fp32.pth"
        else:
            filename = filename or "mlsd_large_512_fp32.pth"
        if os.path.isdir(pretrained_model_or_path):
            model_path = os.path.join(pretrained_model_or_path, filename)
        else:
            model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
        model = MobileV2_MLSD_Large()
        model.load_state_dict(torch.load(model_path), strict=True)
        model.eval()
        return cls(model)

    def to(self, device):
        self.model.to(device)
        return self

    def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
        self.model.to(devices.device)
        if not isinstance(input_image, np.ndarray):
            input_image = np.array(input_image, dtype=np.uint8)
        input_image = HWC3(input_image)
        input_image = resize_image(input_image, detect_resolution)
        assert input_image.ndim == 3
        img = input_image
        img_output = np.zeros_like(img)
        try:
            lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
            for line in lines:
                x_start, y_start, x_end, y_end = [int(val) for val in line]
                cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
        except Exception:
            pass
        detected_map = img_output[:, :, 0]
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, _C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        if opts.control_move_processor:
            self.model.to('cpu')
        return detected_map