File size: 5,494 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from modules import devices
from modules.shared import opts
from modules.control.util import HWC3, resize_image
norm_layer = nn.InstanceNorm2d


class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)
                        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()

        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        model2 = []
        # Residual blocks
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                        nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None): # pylint: disable=unused-argument
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out


class LineartDetector:
    def __init__(self, model, coarse_model):
        self.model = model
        self.model_coarse = coarse_model

    @classmethod
    def from_pretrained(cls, pretrained_model_or_path, filename=None, coarse_filename=None, cache_dir=None):
        filename = filename or "sk_model.pth"
        coarse_filename = coarse_filename or "sk_model2.pth"

        if os.path.isdir(pretrained_model_or_path):
            model_path = os.path.join(pretrained_model_or_path, filename)
            coarse_model_path = os.path.join(pretrained_model_or_path, coarse_filename)
        else:
            model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir)
            coarse_model_path = hf_hub_download(pretrained_model_or_path, coarse_filename, cache_dir=cache_dir)

        model = Generator(3, 1, 3)
        model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
        model.eval()

        coarse_model = Generator(3, 1, 3)
        coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu')))
        coarse_model.eval()

        return cls(model, coarse_model)

    def to(self, device):
        self.model.to(device)
        self.model_coarse.to(device)
        return self

    def __call__(self, input_image, coarse=False, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
        self.model.to(devices.device)
        device = next(iter(self.model.parameters())).device
        if not isinstance(input_image, np.ndarray):
            input_image = np.array(input_image, dtype=np.uint8)
        input_image = HWC3(input_image)
        input_image = resize_image(input_image, detect_resolution)
        model = self.model_coarse if coarse else self.model
        assert input_image.ndim == 3
        image = input_image
        image = torch.from_numpy(image).float().to(device)
        image = image / 255.0
        image = rearrange(image, 'h w c -> 1 c h w')
        line = model(image)[0][0]
        line = line.cpu().numpy()
        line = (line * 255.0).clip(0, 255).astype(np.uint8)
        detected_map = line
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, _C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        detected_map = 255 - detected_map
        if opts.control_move_processor:
            self.model.to('cpu')
        if output_type == "pil":
            detected_map = Image.fromarray(detected_map)
        return detected_map