Spaces:
Runtime error
Runtime error
File size: 12,348 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import io
import os
import cv2
import base64
import functools
from typing import Dict, Any, List, Union, Literal, Optional
from pathlib import Path
import datetime
from enum import Enum
import numpy as np
import pytest
from contextlib import contextmanager
import requests
from PIL import Image
def disable_in_cq(func):
"""Skips the decorated test func in CQ run."""
@functools.wraps(func)
def wrapped_func(*args, **kwargs):
if APITestTemplate.is_cq_run:
pytest.skip()
return func(*args, **kwargs)
return wrapped_func
PayloadOverrideType = Dict[str, Any]
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
test_result_dir = Path(__file__).parent / "results" / f"test_result_{timestamp}"
test_expectation_dir = Path(__file__).parent / "expectations"
os.makedirs(test_expectation_dir, exist_ok=True)
resource_dir = Path(__file__).parents[1] / "images"
def get_dest_dir():
if APITestTemplate.is_set_expectation_run:
return test_expectation_dir
else:
return test_result_dir
def save_base64(base64img: str, dest: Path):
Image.open(io.BytesIO(base64.b64decode(base64img.split(",", 1)[0]))).save(dest)
def read_image(img_path: Path) -> str:
img = cv2.imread(str(img_path))
_, bytes = cv2.imencode(".png", img)
encoded_image = base64.b64encode(bytes).decode("utf-8")
return encoded_image
def read_image_dir(
img_dir: Path, suffixes=(".png", ".jpg", ".jpeg", ".webp")
) -> List[str]:
"""Try read all images in given img_dir."""
img_dir = str(img_dir)
images = []
for filename in os.listdir(img_dir):
if filename.endswith(suffixes):
img_path = os.path.join(img_dir, filename)
try:
images.append(read_image(img_path))
except IOError:
print(f"Error opening {img_path}")
return images
girl_img = read_image(resource_dir / "1girl.png")
mask_img = read_image(resource_dir / "mask.png")
mask_small_img = read_image(resource_dir / "mask_small.png")
portrait_imgs = read_image_dir(resource_dir / "portrait")
realistic_girl_face_img = portrait_imgs[0]
general_negative_prompt = """
(worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality,
((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot,
backlight,(ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21),
(tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, (bad anatomy:1.21),
(bad proportions:1.331), extra limbs, (missing arms:1.331), (extra legs:1.331),
(fused fingers:1.61051), (too many fingers:1.61051), (unclear eyes:1.331), bad hands,
missing fingers, extra digit, bad body, easynegative, nsfw"""
class StableDiffusionVersion(Enum):
"""The version family of stable diffusion model."""
UNKNOWN = 0
SD1x = 1
SD2x = 2
SDXL = 3
sd_version = StableDiffusionVersion(
int(os.environ.get("CONTROLNET_TEST_SD_VERSION", StableDiffusionVersion.SD1x.value))
)
is_full_coverage = os.environ.get("CONTROLNET_TEST_FULL_COVERAGE", None) is not None
class APITestTemplate:
is_set_expectation_run = os.environ.get("CONTROLNET_SET_EXP", "True") == "True"
is_cq_run = os.environ.get("FORGE_CQ_TEST", "False") == "True"
BASE_URL = "http://localhost:7860/"
def __init__(
self,
name: str,
gen_type: Union[Literal["img2img"], Literal["txt2img"]],
payload_overrides: PayloadOverrideType,
unit_overrides: Union[PayloadOverrideType, List[PayloadOverrideType]],
input_image: Optional[str] = None,
):
self.name = name
self.url = APITestTemplate.BASE_URL + "sdapi/v1/" + gen_type
self.payload = {
**(txt2img_payload if gen_type == "txt2img" else img2img_payload),
**payload_overrides,
}
if gen_type == "img2img" and input_image is not None:
self.payload["init_images"] = [input_image]
# CQ runs on CPU. Reduce steps/width/height to increase test speed.
if APITestTemplate.is_cq_run:
if "steps" not in payload_overrides:
self.payload["steps"] = 3
if "width" not in payload_overrides:
self.payload["width"] = 64
if "height" not in payload_overrides:
self.payload["height"] = 64
unit_overrides = (
unit_overrides
if isinstance(unit_overrides, (list, tuple))
else [unit_overrides]
)
self.payload["alwayson_scripts"]["ControlNet"]["args"] = [
{
**default_unit,
**unit_override,
**(
{"image": input_image}
if gen_type == "txt2img" and input_image is not None
else {}
),
}
for unit_override in unit_overrides
]
self.active_unit_count = len(unit_overrides)
def exec(self, *args, **kwargs) -> bool:
if APITestTemplate.is_cq_run:
return self.exec_cq(*args, **kwargs)
else:
return self.exec_local(*args, **kwargs)
def exec_cq(
self, expected_output_num: Optional[int] = None, *args, **kwargs
) -> bool:
"""Execute test in CQ environment."""
res = requests.post(url=self.url, json=self.payload)
if res.status_code != 200:
print(f"Unexpected status code {res.status_code}")
return False
response = res.json()
if "images" not in response:
print(response.keys())
return False
if expected_output_num is None:
expected_output_num = (
self.payload["n_iter"] * self.payload["batch_size"]
+ self.active_unit_count
)
if len(response["images"]) != expected_output_num:
print(f"{len(response['images'])} != {expected_output_num}")
return False
return True
def exec_local(self, result_only: bool = True, *args, **kwargs) -> bool:
"""Execute test in local environment."""
if not APITestTemplate.is_set_expectation_run:
os.makedirs(test_result_dir, exist_ok=True)
failed = False
response = requests.post(url=self.url, json=self.payload).json()
if "images" not in response:
print(response.keys())
return False
dest_dir = get_dest_dir()
results = response["images"][:1] if result_only else response["images"]
for i, base64image in enumerate(results):
img_file_name = f"{self.name}_{i}.png"
save_base64(base64image, dest_dir / img_file_name)
if not APITestTemplate.is_set_expectation_run:
try:
img1 = cv2.imread(os.path.join(test_expectation_dir, img_file_name))
img2 = cv2.imread(os.path.join(test_result_dir, img_file_name))
except Exception as e:
print(f"Get exception reading imgs: {e}")
failed = True
continue
if img1 is None:
print(f"Warn: No expectation file found {img_file_name}.")
continue
if not expect_same_image(
img1,
img2,
diff_img_path=str(
test_result_dir / img_file_name.replace(".png", "_diff.png")
),
):
failed = True
return not failed
def expect_same_image(img1, img2, diff_img_path: str) -> bool:
# Calculate the difference between the two images
diff = cv2.absdiff(img1, img2)
# Set a threshold to highlight the different pixels
threshold = 30
diff_highlighted = np.where(diff > threshold, 255, 0).astype(np.uint8)
# Assert that the two images are similar within a tolerance
similar = np.allclose(img1, img2, rtol=0.5, atol=1)
if not similar:
# Save the diff_highlighted image to inspect the differences
cv2.imwrite(diff_img_path, diff_highlighted)
matching_pixels = np.isclose(img1, img2, rtol=0.5, atol=1)
similar_in_general = (matching_pixels.sum() / matching_pixels.size) >= 0.95
return similar_in_general
@contextmanager
def console_log_context(output_file="output.txt"):
log_encoding = "utf-8" if APITestTemplate.is_cq_run else "utf-16"
class Context:
def __init__(self, output_file) -> None:
self.output_file = output_file
self.init_line_count = 0
with open(self.output_file, "r", encoding=log_encoding) as file:
for _ in file:
self.init_line_count += 1
def is_in_console_logs(self, expected_lines: List[str]) -> bool:
with open(self.output_file, "r", encoding=log_encoding) as file:
for i, line in enumerate(file):
if not expected_lines:
break
if i < self.init_line_count:
continue
if expected_lines[0] in line:
expected_lines.pop(0)
return len(expected_lines) == 0
yield Context(output_file)
def get_model(model_name: str) -> str:
"""Find an available model with specified model name."""
if model_name.lower() == "none":
return "None"
r = requests.get(APITestTemplate.BASE_URL + "controlnet/model_list")
result = r.json()
if "model_list" not in result:
raise ValueError(f"No model available\n{result}")
candidates = [
model for model in result["model_list"] if model_name.lower() in model.lower()
]
if not candidates:
raise ValueError("No suitable model available")
return candidates[0]
default_unit = {
"control_mode": 0,
"enabled": True,
"guidance_end": 1,
"guidance_start": 0,
"pixel_perfect": True,
"processor_res": 512,
"resize_mode": 1,
"threshold_a": 64,
"threshold_b": 64,
"weight": 1,
"module": "canny",
"model": get_model("sd15_canny"),
}
img2img_payload = {
"batch_size": 1,
"cfg_scale": 7,
"height": 768,
"width": 512,
"n_iter": 1,
"steps": 10,
"sampler_name": "Euler a",
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"negative_prompt": "",
"seed": 42,
"seed_enable_extras": False,
"seed_resize_from_h": 0,
"seed_resize_from_w": 0,
"subseed": -1,
"subseed_strength": 0,
"override_settings": {},
"override_settings_restore_afterwards": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"s_churn": 0,
"s_min_uncond": 0,
"s_noise": 1,
"s_tmax": None,
"s_tmin": 0,
"script_args": [],
"script_name": None,
"styles": [],
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"denoising_strength": 0.75,
"initial_noise_multiplier": 1,
"inpaint_full_res": 0,
"inpaint_full_res_padding": 32,
"inpainting_fill": 1,
"inpainting_mask_invert": 0,
"mask_blur_x": 4,
"mask_blur_y": 4,
"mask_blur": 4,
"resize_mode": 0,
}
txt2img_payload = {
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"batch_size": 1,
"cfg_scale": 7,
"comments": {},
"disable_extra_networks": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"enable_hr": False,
"height": 768,
"hr_negative_prompt": "",
"hr_prompt": "",
"hr_resize_x": 0,
"hr_resize_y": 0,
"hr_scale": 2,
"hr_second_pass_steps": 0,
"hr_upscaler": "Latent",
"n_iter": 1,
"negative_prompt": "",
"override_settings": {},
"override_settings_restore_afterwards": True,
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"restore_faces": False,
"s_churn": 0.0,
"s_min_uncond": 0,
"s_noise": 1.0,
"s_tmax": None,
"s_tmin": 0.0,
"sampler_name": "Euler a",
"script_args": [],
"script_name": None,
"seed": 42,
"seed_enable_extras": True,
"seed_resize_from_h": -1,
"seed_resize_from_w": -1,
"steps": 10,
"styles": [],
"subseed": -1,
"subseed_strength": 0,
"tiling": False,
"width": 512,
}
|