File size: 5,433 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os.path
import stat
from collections import OrderedDict

from modules import shared, scripts, sd_models
from modules.paths import models_path

from scripts.enums import StableDiffusionVersion
from scripts.supported_preprocessor import Preprocessor

from typing import Dict, Tuple, List

CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors", ".bin"]
cn_models_dir = os.path.join(models_path, "ControlNet")
cn_models_dir_old = os.path.join(scripts.basedir(), "models")
cn_models = OrderedDict()      # "My_Lora(abcd1234)" -> C:/path/to/model.safetensors
cn_models_names = {}  # "my_lora" -> "My_Lora(abcd1234)"


default_detectedmap_dir = os.path.join("detected_maps")
script_dir = scripts.basedir()

os.makedirs(cn_models_dir, exist_ok=True)


def traverse_all_files(curr_path, model_list):
    f_list = [
        (os.path.join(curr_path, entry.name), entry.stat())
        for entry in os.scandir(curr_path)
        if os.path.isdir(curr_path)
    ]
    for f_info in f_list:
        fname, fstat = f_info
        if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
            model_list.append(f_info)
        elif stat.S_ISDIR(fstat.st_mode):
            model_list = traverse_all_files(fname, model_list)
    return model_list


def get_all_models(sort_by, filter_by, path):
    res = OrderedDict()
    fileinfos = traverse_all_files(path, [])
    filter_by = filter_by.strip(" ")
    if len(filter_by) != 0:
        fileinfos = [x for x in fileinfos if filter_by.lower()
                     in os.path.basename(x[0]).lower()]
    if sort_by == "name":
        fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
    elif sort_by == "date":
        fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
    elif sort_by == "path name":
        fileinfos = sorted(fileinfos)

    for finfo in fileinfos:
        filename = finfo[0]
        name = os.path.splitext(os.path.basename(filename))[0]
        # Prevent a hypothetical "None.pt" from being listed.
        if name != "None":
            res[name + f" [{sd_models.model_hash(filename)}]"] = filename

    return res


def update_cn_models():
    cn_models.clear()
    ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
    extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
                if extra_lora_path is not None and os.path.exists(extra_lora_path))
    paths = [cn_models_dir, cn_models_dir_old, *extra_lora_paths]

    for path in paths:
        sort_by = shared.opts.data.get(
            "control_net_models_sort_models_by", "name")
        filter_by = shared.opts.data.get("control_net_models_name_filter", "")
        found = get_all_models(sort_by, filter_by, path)
        cn_models.update({**found, **cn_models})

    # insert "None" at the beginning of `cn_models` in-place
    cn_models_copy = OrderedDict(cn_models)
    cn_models.clear()
    cn_models.update({**{"None": None}, **cn_models_copy})

    cn_models_names.clear()
    for name_and_hash, filename in cn_models.items():
        if filename is None:
            continue
        name = os.path.splitext(os.path.basename(filename))[0].lower()
        cn_models_names[name] = name_and_hash


def get_sd_version() -> StableDiffusionVersion:
    if hasattr(shared.sd_model, 'is_sdxl'):
        if shared.sd_model.is_sdxl:
            return StableDiffusionVersion.SDXL
        elif shared.sd_model.is_sd2:
            return StableDiffusionVersion.SD2x
        elif shared.sd_model.is_sd1:
            return StableDiffusionVersion.SD1x
        else:
            return StableDiffusionVersion.UNKNOWN

    # backward compability for webui < 1.5.0
    else:
        if hasattr(shared.sd_model, 'conditioner'):
            return StableDiffusionVersion.SDXL
        elif hasattr(shared.sd_model.cond_stage_model, 'model'):
            return StableDiffusionVersion.SD2x
        else:
            return StableDiffusionVersion.SD1x



def select_control_type(
    control_type: str,
    sd_version: StableDiffusionVersion = StableDiffusionVersion.UNKNOWN,
    cn_models: Dict = cn_models, # Override or testing
) -> Tuple[List[str], List[str], str, str]:
    pattern = control_type.lower()
    all_models = list(cn_models.keys())

    if pattern == "all":
        return [
            [p.label for p in Preprocessor.get_sorted_preprocessors()],
            all_models,
            'none', #default option
            "None"  #default model
        ]

    filtered_model_list = [
        model for model in all_models
        if model.lower() == "none" or
        ((
            pattern in model.lower() or
            any(a in model.lower() for a in Preprocessor.tag_to_filters(control_type))
        ) and (
            sd_version.is_compatible_with(StableDiffusionVersion.detect_from_model_name(model))
        ))
    ]
    assert len(filtered_model_list) > 0, "'None' model should always be available."
    if len(filtered_model_list) == 1:
        default_model = "None"
    else:
        default_model = filtered_model_list[1]
        for x in filtered_model_list:
            if "11" in x.split("[")[0]:
                default_model = x
                break

    return (
        [p.label for p in Preprocessor.get_filtered_preprocessors(control_type)],
        filtered_model_list,
        Preprocessor.get_default_preprocessor(control_type).label,
        default_model
    )