Spaces:
Runtime error
Runtime error
File size: 54,425 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 |
import json
import gradio as gr
import functools
from copy import copy
from typing import List, Optional, Union, Dict, Tuple, Literal
from dataclasses import dataclass
import numpy as np
from scripts.supported_preprocessor import Preprocessor
from scripts.utils import svg_preprocess, read_image
from scripts import (
global_state,
external_code,
)
from annotator.util import HWC3
from scripts.logging import logger
from scripts.controlnet_ui.openpose_editor import OpenposeEditor
from scripts.controlnet_ui.preset import ControlNetPresetUI
from scripts.controlnet_ui.tool_button import ToolButton
from scripts.controlnet_ui.photopea import Photopea
from scripts.controlnet_ui.advanced_weight_control import AdvancedWeightControl
from scripts.enums import InputMode
from modules import shared
from modules.ui_components import FormRow
@dataclass
class A1111Context:
"""Contains all components from A1111."""
img2img_batch_input_dir: Optional[gr.components.Component] = None
img2img_batch_output_dir: Optional[gr.components.Component] = None
txt2img_submit_button: Optional[gr.components.Component] = None
img2img_submit_button: Optional[gr.components.Component] = None
# Slider controls from A1111 WebUI.
txt2img_w_slider: Optional[gr.components.Component] = None
txt2img_h_slider: Optional[gr.components.Component] = None
img2img_w_slider: Optional[gr.components.Component] = None
img2img_h_slider: Optional[gr.components.Component] = None
img2img_img2img_tab: Optional[gr.components.Component] = None
img2img_img2img_sketch_tab: Optional[gr.components.Component] = None
img2img_batch_tab: Optional[gr.components.Component] = None
img2img_inpaint_tab: Optional[gr.components.Component] = None
img2img_inpaint_sketch_tab: Optional[gr.components.Component] = None
img2img_inpaint_upload_tab: Optional[gr.components.Component] = None
img2img_inpaint_area: Optional[gr.components.Component] = None
# txt2img_enable_hr is only available for A1111 > 1.7.0.
txt2img_enable_hr: Optional[gr.components.Component] = None
setting_sd_model_checkpoint: Optional[gr.components.Component] = None
@property
def img2img_inpaint_tabs(self) -> Tuple[gr.components.Component]:
return (
self.img2img_inpaint_tab,
self.img2img_inpaint_sketch_tab,
self.img2img_inpaint_upload_tab,
)
@property
def img2img_non_inpaint_tabs(self) -> List[gr.components.Component]:
return (
self.img2img_img2img_tab,
self.img2img_img2img_sketch_tab,
self.img2img_batch_tab,
)
@property
def ui_initialized(self) -> bool:
optional_components = {
# Optional components are only available after A1111 v1.7.0.
"img2img_img2img_tab": "img2img_img2img_tab",
"img2img_img2img_sketch_tab": "img2img_img2img_sketch_tab",
"img2img_batch_tab": "img2img_batch_tab",
"img2img_inpaint_tab": "img2img_inpaint_tab",
"img2img_inpaint_sketch_tab": "img2img_inpaint_sketch_tab",
"img2img_inpaint_upload_tab": "img2img_inpaint_upload_tab",
# SDNext does not have this field. Temporarily disable the callback on
# the checkpoint change until we find a way to register an event when
# all A1111 UI components are ready.
"setting_sd_model_checkpoint": "setting_sd_model_checkpoint",
}
return all(
c
for name, c in vars(self).items()
if name not in optional_components.values()
)
def set_component(self, component: gr.components.Component):
id_mapping = {
"img2img_batch_input_dir": "img2img_batch_input_dir",
"img2img_batch_output_dir": "img2img_batch_output_dir",
"txt2img_generate": "txt2img_submit_button",
"img2img_generate": "img2img_submit_button",
"txt2img_width": "txt2img_w_slider",
"txt2img_height": "txt2img_h_slider",
"img2img_width": "img2img_w_slider",
"img2img_height": "img2img_h_slider",
"img2img_img2img_tab": "img2img_img2img_tab",
"img2img_img2img_sketch_tab": "img2img_img2img_sketch_tab",
"img2img_batch_tab": "img2img_batch_tab",
"img2img_inpaint_tab": "img2img_inpaint_tab",
"img2img_inpaint_sketch_tab": "img2img_inpaint_sketch_tab",
"img2img_inpaint_upload_tab": "img2img_inpaint_upload_tab",
"img2img_inpaint_full_res": "img2img_inpaint_area",
"txt2img_hr-checkbox": "txt2img_enable_hr",
# backward compatibility for webui < 1.6.0
"txt2img_enable_hr": "txt2img_enable_hr",
# setting_sd_model_checkpoint is expected to be initialized last.
# "setting_sd_model_checkpoint": "setting_sd_model_checkpoint",
}
elem_id = getattr(component, "elem_id", None)
# Do not set component if it has already been set.
# https://github.com/Mikubill/sd-webui-controlnet/issues/2587
if elem_id in id_mapping and getattr(self, id_mapping[elem_id]) is None:
setattr(self, id_mapping[elem_id], component)
logger.debug(f"Setting {elem_id}.")
logger.debug(
f"A1111 initialized {sum(c is not None for c in vars(self).values())}/{len(vars(self).keys())}."
)
class UiControlNetUnit(external_code.ControlNetUnit):
"""The data class that stores all states of a ControlNetUnit."""
def __init__(
self,
input_mode: InputMode = InputMode.SIMPLE,
batch_images: Optional[Union[str, List[external_code.InputImage]]] = None,
output_dir: str = "",
loopback: bool = False,
merge_gallery_files: List[
Dict[Union[Literal["name"], Literal["data"]], str]
] = [],
use_preview_as_input: bool = False,
generated_image: Optional[np.ndarray] = None,
mask_image: Optional[np.ndarray] = None,
enabled: bool = True,
module: Optional[str] = None,
model: Optional[str] = None,
weight: float = 1.0,
image: Optional[Dict[str, np.ndarray]] = None,
*args,
**kwargs,
):
if use_preview_as_input and generated_image is not None:
input_image = generated_image
module = "none"
else:
input_image = image
# Prefer uploaded mask_image over hand-drawn mask.
if input_image is not None and mask_image is not None:
assert isinstance(input_image, dict)
input_image["mask"] = mask_image
if merge_gallery_files and input_mode == InputMode.MERGE:
input_image = [
{"image": read_image(file["name"])} for file in merge_gallery_files
]
super().__init__(enabled, module, model, weight, input_image, *args, **kwargs)
self.is_ui = True
self.input_mode = input_mode
self.batch_images = batch_images
self.output_dir = output_dir
self.loopback = loopback
def unfold_merged(self) -> List[external_code.ControlNetUnit]:
"""Unfolds a merged unit to multiple units. Keeps the unit merged for
preprocessors that can accept multiple input images.
"""
if self.input_mode != InputMode.MERGE:
return [copy(self)]
if self.accepts_multiple_inputs():
self.input_mode = InputMode.SIMPLE
return [copy(self)]
assert isinstance(self.image, list)
result = []
for image in self.image:
unit = copy(self)
unit.image = image["image"]
unit.input_mode = InputMode.SIMPLE
unit.weight = self.weight / len(self.image)
result.append(unit)
return result
class ControlNetUiGroup(object):
refresh_symbol = "\U0001f504" # ๐
switch_values_symbol = "\U000021C5" # โ
camera_symbol = "\U0001F4F7" # ๐ท
reverse_symbol = "\U000021C4" # โ
tossup_symbol = "\u2934"
trigger_symbol = "\U0001F4A5" # ๐ฅ
open_symbol = "\U0001F4DD" # ๐
tooltips = {
"๐": "Refresh",
"\u2934": "Send dimensions to stable diffusion",
"๐ฅ": "Run preprocessor",
"๐": "Open new canvas",
"๐ท": "Enable webcam",
"โ": "Mirror webcam",
}
global_batch_input_dir = gr.Textbox(
label="Controlnet input directory",
placeholder="Leave empty to use input directory",
**shared.hide_dirs,
elem_id="controlnet_batch_input_dir",
)
a1111_context = A1111Context()
# All ControlNetUiGroup instances created.
all_ui_groups: List["ControlNetUiGroup"] = []
def __init__(
self,
is_img2img: bool,
default_unit: external_code.ControlNetUnit,
photopea: Optional[Photopea],
):
# Whether callbacks have been registered.
self.callbacks_registered: bool = False
# Whether the render method on this object has been called.
self.ui_initialized: bool = False
self.is_img2img = is_img2img
self.default_unit = default_unit
self.photopea = photopea
self.webcam_enabled = False
self.webcam_mirrored = False
# Note: All gradio elements declared in `render` will be defined as member variable.
# Update counter to trigger a force update of UiControlNetUnit.
# This is useful when a field with no event subscriber available changes.
# e.g. gr.Gallery, gr.State, etc.
self.update_unit_counter = None
self.upload_tab = None
self.image = None
self.generated_image_group = None
self.generated_image = None
self.mask_image_group = None
self.mask_image = None
self.batch_tab = None
self.batch_image_dir = None
self.merge_tab = None
self.merge_gallery = None
self.merge_upload_button = None
self.merge_clear_button = None
self.create_canvas = None
self.canvas_width = None
self.canvas_height = None
self.canvas_create_button = None
self.canvas_cancel_button = None
self.open_new_canvas_button = None
self.webcam_enable = None
self.webcam_mirror = None
self.send_dimen_button = None
self.enabled = None
self.low_vram = None
self.pixel_perfect = None
self.preprocessor_preview = None
self.mask_upload = None
self.type_filter = None
self.module = None
self.trigger_preprocessor = None
self.model = None
self.refresh_models = None
self.weight = None
self.guidance_start = None
self.guidance_end = None
self.advanced = None
self.processor_res = None
self.threshold_a = None
self.threshold_b = None
self.control_mode = None
self.resize_mode = None
self.loopback = None
self.use_preview_as_input = None
self.openpose_editor = None
self.preset_panel = None
self.upload_independent_img_in_img2img = None
self.image_upload_panel = None
self.save_detected_map = None
self.input_mode = gr.State(InputMode.SIMPLE)
self.inpaint_crop_input_image = None
self.hr_option = None
self.advanced_weight_control = AdvancedWeightControl()
self.batch_image_dir_state = None
self.output_dir_state = None
# API-only fields
self.advanced_weighting = gr.State(None)
self.ipadapter_input = gr.State(None)
ControlNetUiGroup.all_ui_groups.append(self)
def render(self, tabname: str, elem_id_tabname: str) -> None:
"""The pure HTML structure of a single ControlNetUnit. Calling this
function will populate `self` with all gradio element declared
in local scope.
Args:
tabname:
elem_id_tabname:
Returns:
None
"""
self.update_unit_counter = gr.Number(value=0, visible=False)
self.openpose_editor = OpenposeEditor()
with gr.Group(visible=not self.is_img2img) as self.image_upload_panel:
self.save_detected_map = gr.Checkbox(value=True, visible=False)
with gr.Tabs():
with gr.Tab(label="Single Image") as self.upload_tab:
with gr.Row(elem_classes=["cnet-image-row"], equal_height=True):
with gr.Group(elem_classes=["cnet-input-image-group"]):
self.image = gr.Image(
source="upload",
brush_radius=20,
mirror_webcam=False,
type="numpy",
tool="sketch",
elem_id=f"{elem_id_tabname}_{tabname}_input_image",
elem_classes=["cnet-image"],
brush_color=shared.opts.img2img_inpaint_mask_brush_color
if hasattr(
shared.opts, "img2img_inpaint_mask_brush_color"
)
else None,
)
self.image.preprocess = functools.partial(
svg_preprocess, preprocess=self.image.preprocess
)
self.openpose_editor.render_upload()
with gr.Group(
visible=False, elem_classes=["cnet-generated-image-group"]
) as self.generated_image_group:
self.generated_image = gr.Image(
value=None,
label="Preprocessor Preview",
elem_id=f"{elem_id_tabname}_{tabname}_generated_image",
elem_classes=["cnet-image"],
interactive=True,
height=242,
) # Gradio's magic number. Only 242 works.
with gr.Group(
elem_classes=["cnet-generated-image-control-group"]
):
if self.photopea:
self.photopea.render_child_trigger()
self.openpose_editor.render_edit()
preview_check_elem_id = f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_preview_checkbox"
preview_close_button_js = f"document.querySelector('#{preview_check_elem_id} input[type=\\'checkbox\\']').click();"
gr.HTML(
value=f"""<a title="Close Preview" onclick="{preview_close_button_js}">Close</a>""",
visible=True,
elem_classes=["cnet-close-preview"],
)
with gr.Group(
visible=False, elem_classes=["cnet-mask-image-group"]
) as self.mask_image_group:
self.mask_image = gr.Image(
value=None,
label="Upload Mask",
elem_id=f"{elem_id_tabname}_{tabname}_mask_image",
elem_classes=["cnet-mask-image"],
interactive=True,
)
with gr.Tab(label="Batch") as self.batch_tab:
self.batch_image_dir = gr.Textbox(
label="Input Directory",
placeholder="Leave empty to use img2img batch controlnet input directory",
elem_id=f"{elem_id_tabname}_{tabname}_batch_image_dir",
)
with gr.Tab(label="Multi-Inputs") as self.merge_tab:
self.merge_gallery = gr.Gallery(
columns=[4], rows=[2], object_fit="contain", height="auto"
)
with gr.Row():
self.merge_upload_button = gr.UploadButton(
"Upload Images",
file_types=["image"],
file_count="multiple",
)
self.merge_clear_button = gr.Button("Clear Images")
if self.photopea:
self.photopea.attach_photopea_output(self.generated_image)
with gr.Accordion(
label="Open New Canvas", visible=False
) as self.create_canvas:
self.canvas_width = gr.Slider(
label="New Canvas Width",
minimum=256,
maximum=1024,
value=512,
step=64,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_width",
)
self.canvas_height = gr.Slider(
label="New Canvas Height",
minimum=256,
maximum=1024,
value=512,
step=64,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_height",
)
with gr.Row():
self.canvas_create_button = gr.Button(
value="Create New Canvas",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_create_button",
)
self.canvas_cancel_button = gr.Button(
value="Cancel",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_canvas_cancel_button",
)
with gr.Row(elem_classes="controlnet_image_controls"):
gr.HTML(
value="<p>Set the preprocessor to [invert] If your image has white background and black lines.</p>",
elem_classes="controlnet_invert_warning",
)
self.open_new_canvas_button = ToolButton(
value=ControlNetUiGroup.open_symbol,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_open_new_canvas_button",
tooltip=ControlNetUiGroup.tooltips[ControlNetUiGroup.open_symbol],
)
self.webcam_enable = ToolButton(
value=ControlNetUiGroup.camera_symbol,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_enable",
tooltip=ControlNetUiGroup.tooltips[ControlNetUiGroup.camera_symbol],
)
self.webcam_mirror = ToolButton(
value=ControlNetUiGroup.reverse_symbol,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_webcam_mirror",
tooltip=ControlNetUiGroup.tooltips[
ControlNetUiGroup.reverse_symbol
],
)
self.send_dimen_button = ToolButton(
value=ControlNetUiGroup.tossup_symbol,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_send_dimen_button",
tooltip=ControlNetUiGroup.tooltips[ControlNetUiGroup.tossup_symbol],
)
with FormRow(elem_classes=["controlnet_main_options"]):
self.enabled = gr.Checkbox(
label="Enable",
value=self.default_unit.enabled,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_enable_checkbox",
elem_classes=["cnet-unit-enabled"],
)
self.low_vram = gr.Checkbox(
label="Low VRAM",
value=self.default_unit.low_vram,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_low_vram_checkbox",
)
self.pixel_perfect = gr.Checkbox(
label="Pixel Perfect",
value=self.default_unit.pixel_perfect,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_pixel_perfect_checkbox",
)
self.preprocessor_preview = gr.Checkbox(
label="Allow Preview",
value=False,
elem_classes=["cnet-allow-preview"],
elem_id=preview_check_elem_id,
visible=not self.is_img2img,
)
self.mask_upload = gr.Checkbox(
label="Mask Upload",
value=False,
elem_classes=["cnet-mask-upload"],
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_mask_upload_checkbox",
visible=not self.is_img2img,
)
self.use_preview_as_input = gr.Checkbox(
label="Preview as Input",
value=False,
elem_classes=["cnet-preview-as-input"],
visible=False,
)
with gr.Row(elem_classes="controlnet_img2img_options"):
if self.is_img2img:
self.upload_independent_img_in_img2img = gr.Checkbox(
label="Upload independent control image",
value=False,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_same_img2img_checkbox",
elem_classes=["cnet-unit-same_img2img"],
)
else:
self.upload_independent_img_in_img2img = None
# Note: The checkbox needs to exist for both img2img and txt2img as infotext
# needs the checkbox value.
self.inpaint_crop_input_image = gr.Checkbox(
label="Crop input image based on A1111 mask",
value=False,
elem_classes=["cnet-crop-input-image"],
visible=False,
)
with gr.Row(elem_classes=["controlnet_control_type", "controlnet_row"]):
self.type_filter = gr.Radio(
Preprocessor.get_all_preprocessor_tags(),
label="Control Type",
value="All",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_type_filter_radio",
elem_classes="controlnet_control_type_filter_group",
)
with gr.Row(elem_classes=["controlnet_preprocessor_model", "controlnet_row"]):
self.module = gr.Dropdown(
[p.label for p in Preprocessor.get_sorted_preprocessors()],
label="Preprocessor",
value=self.default_unit.module,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_dropdown",
)
self.trigger_preprocessor = ToolButton(
value=ControlNetUiGroup.trigger_symbol,
visible=not self.is_img2img,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_trigger_preprocessor",
elem_classes=["cnet-run-preprocessor"],
tooltip=ControlNetUiGroup.tooltips[ControlNetUiGroup.trigger_symbol],
)
self.model = gr.Dropdown(
list(global_state.cn_models.keys()),
label="Model",
value=self.default_unit.model,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_model_dropdown",
)
self.refresh_models = ToolButton(
value=ControlNetUiGroup.refresh_symbol,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_refresh_models",
tooltip=ControlNetUiGroup.tooltips[ControlNetUiGroup.refresh_symbol],
)
with gr.Row(elem_classes=["controlnet_weight_steps", "controlnet_row"]):
self.weight = gr.Slider(
label="Control Weight",
value=self.default_unit.weight,
minimum=0.0,
maximum=2.0,
step=0.05,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_weight_slider",
elem_classes="controlnet_control_weight_slider",
)
self.guidance_start = gr.Slider(
label="Starting Control Step",
value=self.default_unit.guidance_start,
minimum=0.0,
maximum=1.0,
interactive=True,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_start_control_step_slider",
elem_classes="controlnet_start_control_step_slider",
)
self.guidance_end = gr.Slider(
label="Ending Control Step",
value=self.default_unit.guidance_end,
minimum=0.0,
maximum=1.0,
interactive=True,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_ending_control_step_slider",
elem_classes="controlnet_ending_control_step_slider",
)
# advanced options
with gr.Column(visible=False) as self.advanced:
self.processor_res = gr.Slider(
label="Preprocessor resolution",
value=self.default_unit.processor_res,
minimum=64,
maximum=2048,
visible=False,
interactive=True,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_preprocessor_resolution_slider",
)
self.threshold_a = gr.Slider(
label="Threshold A",
value=self.default_unit.threshold_a,
minimum=64,
maximum=1024,
visible=False,
interactive=True,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_A_slider",
)
self.threshold_b = gr.Slider(
label="Threshold B",
value=self.default_unit.threshold_b,
minimum=64,
maximum=1024,
visible=False,
interactive=True,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_threshold_B_slider",
)
self.control_mode = gr.Radio(
choices=[e.value for e in external_code.ControlMode],
value=self.default_unit.control_mode.value,
label="Control Mode",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_control_mode_radio",
elem_classes="controlnet_control_mode_radio",
)
self.resize_mode = gr.Radio(
choices=[e.value for e in external_code.ResizeMode],
value=self.default_unit.resize_mode.value,
label="Resize Mode",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_resize_mode_radio",
elem_classes="controlnet_resize_mode_radio",
visible=not self.is_img2img,
)
self.hr_option = gr.Radio(
choices=[e.value for e in external_code.HiResFixOption],
value=self.default_unit.hr_option.value,
label="Hires-Fix Option",
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_hr_option_radio",
elem_classes="controlnet_hr_option_radio",
visible=False,
)
self.loopback = gr.Checkbox(
label="[Batch Loopback] Automatically send generated images to this ControlNet unit in batch generation",
value=self.default_unit.loopback,
elem_id=f"{elem_id_tabname}_{tabname}_controlnet_automatically_send_generated_images_checkbox",
elem_classes="controlnet_loopback_checkbox",
visible=False,
)
self.advanced_weight_control.render()
self.preset_panel = ControlNetPresetUI(
id_prefix=f"{elem_id_tabname}_{tabname}_"
)
self.batch_image_dir_state = gr.State("")
self.output_dir_state = gr.State("")
unit_args = (
self.input_mode,
self.batch_image_dir_state,
self.output_dir_state,
self.loopback,
# Non-persistent fields.
# Following inputs will not be persistent on `ControlNetUnit`.
# They are only used during object construction.
self.merge_gallery,
self.use_preview_as_input,
self.generated_image,
self.mask_image,
# End of Non-persistent fields.
self.enabled,
self.module,
self.model,
self.weight,
self.image,
self.resize_mode,
self.low_vram,
self.processor_res,
self.threshold_a,
self.threshold_b,
self.guidance_start,
self.guidance_end,
self.pixel_perfect,
self.control_mode,
self.inpaint_crop_input_image,
self.hr_option,
self.save_detected_map,
self.advanced_weighting,
)
unit = gr.State(self.default_unit)
for comp in unit_args + (self.update_unit_counter,):
event_subscribers = []
if hasattr(comp, "edit"):
event_subscribers.append(comp.edit)
elif hasattr(comp, "click"):
event_subscribers.append(comp.click)
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
event_subscribers.append(comp.release)
elif hasattr(comp, "change"):
event_subscribers.append(comp.change)
if hasattr(comp, "clear"):
event_subscribers.append(comp.clear)
for event_subscriber in event_subscribers:
event_subscriber(
fn=UiControlNetUnit, inputs=list(unit_args), outputs=unit
)
(
ControlNetUiGroup.a1111_context.img2img_submit_button
if self.is_img2img
else ControlNetUiGroup.a1111_context.txt2img_submit_button
).click(
fn=UiControlNetUnit,
inputs=list(unit_args),
outputs=unit,
queue=False,
)
self.register_core_callbacks()
self.ui_initialized = True
return unit
def register_send_dimensions(self):
"""Register event handler for send dimension button."""
def send_dimensions(image):
def closesteight(num):
rem = num % 8
if rem <= 4:
return round(num - rem)
else:
return round(num + (8 - rem))
if image:
interm = np.asarray(image.get("image"))
return closesteight(interm.shape[1]), closesteight(interm.shape[0])
else:
return gr.Slider.update(), gr.Slider.update()
outputs = (
[
ControlNetUiGroup.a1111_context.img2img_w_slider,
ControlNetUiGroup.a1111_context.img2img_h_slider,
]
if self.is_img2img
else [
ControlNetUiGroup.a1111_context.txt2img_w_slider,
ControlNetUiGroup.a1111_context.txt2img_h_slider,
]
)
self.send_dimen_button.click(
fn=send_dimensions,
inputs=[self.image],
outputs=outputs,
show_progress=False,
)
def register_webcam_toggle(self):
def webcam_toggle():
self.webcam_enabled = not self.webcam_enabled
return {
"value": None,
"source": "webcam" if self.webcam_enabled else "upload",
"__type__": "update",
}
self.webcam_enable.click(
webcam_toggle, inputs=None, outputs=self.image, show_progress=False
)
def register_webcam_mirror_toggle(self):
def webcam_mirror_toggle():
self.webcam_mirrored = not self.webcam_mirrored
return {"mirror_webcam": self.webcam_mirrored, "__type__": "update"}
self.webcam_mirror.click(
webcam_mirror_toggle, inputs=None, outputs=self.image, show_progress=False
)
def register_refresh_all_models(self):
def refresh_all_models(model: str):
global_state.update_cn_models()
choices = list(global_state.cn_models.keys())
return gr.Dropdown.update(
value=model if model in global_state.cn_models else "None",
choices=choices,
)
self.refresh_models.click(
refresh_all_models,
inputs=[self.model],
outputs=[self.model],
show_progress=False,
)
def register_build_sliders(self):
def build_sliders(module: str, pp: bool):
preprocessor = Preprocessor.get_preprocessor(module)
slider_resolution_kwargs = preprocessor.slider_resolution.gradio_update_kwargs.copy()
if pp:
slider_resolution_kwargs['visible'] = False
grs = [
gr.update(**slider_resolution_kwargs),
gr.update(**preprocessor.slider_1.gradio_update_kwargs.copy()),
gr.update(**preprocessor.slider_2.gradio_update_kwargs.copy()),
gr.update(visible=True),
gr.update(visible=not preprocessor.do_not_need_model),
gr.update(visible=not preprocessor.do_not_need_model),
gr.update(visible=preprocessor.show_control_mode),
]
return grs
inputs = [
self.module,
self.pixel_perfect,
]
outputs = [
self.processor_res,
self.threshold_a,
self.threshold_b,
self.advanced,
self.model,
self.refresh_models,
self.control_mode,
]
self.module.change(
build_sliders, inputs=inputs, outputs=outputs, show_progress=False
)
self.pixel_perfect.change(
build_sliders, inputs=inputs, outputs=outputs, show_progress=False
)
def filter_selected(k: str):
logger.debug(f"Switch to control type {k}")
(
filtered_preprocessor_list,
filtered_model_list,
default_option,
default_model,
) = global_state.select_control_type(k, global_state.get_sd_version())
return [
gr.Dropdown.update(
value=default_option, choices=filtered_preprocessor_list
),
gr.Dropdown.update(
value=default_model, choices=filtered_model_list
),
]
self.type_filter.change(
fn=filter_selected,
inputs=[self.type_filter],
outputs=[self.module, self.model],
show_progress=False,
)
def register_sd_version_changed(self):
def sd_version_changed(type_filter: str, current_model: str):
"""When SD version changes, update model dropdown choices."""
(
filtered_preprocessor_list,
filtered_model_list,
default_option,
default_model,
) = global_state.select_control_type(
type_filter, global_state.get_sd_version()
)
if current_model in filtered_model_list:
return gr.update()
return gr.Dropdown.update(
value=default_model,
choices=filtered_model_list,
)
if ControlNetUiGroup.a1111_context.setting_sd_model_checkpoint:
ControlNetUiGroup.a1111_context.setting_sd_model_checkpoint.change(
fn=sd_version_changed,
inputs=[self.type_filter, self.model],
outputs=[self.model],
show_progress=False,
)
def register_run_annotator(self):
def run_annotator(image, module, pres, pthr_a, pthr_b, t2i_w, t2i_h, pp, rm, model: str):
if image is None:
return (
gr.update(value=None, visible=True),
gr.update(),
*self.openpose_editor.update(""),
)
img = HWC3(image["image"])
has_mask = not (
(image["mask"][:, :, 0] <= 5).all()
or (image["mask"][:, :, 0] >= 250).all()
)
if "inpaint" in module:
color = HWC3(image["image"])
alpha = image["mask"][:, :, 0:1]
img = np.concatenate([color, alpha], axis=2)
elif has_mask and not shared.opts.data.get(
"controlnet_ignore_noninpaint_mask", False
):
img = HWC3(image["mask"][:, :, 0])
preprocessor = Preprocessor.get_preprocessor(module)
if pp:
pres = external_code.pixel_perfect_resolution(
img,
target_H=t2i_h,
target_W=t2i_w,
resize_mode=external_code.resize_mode_from_value(rm),
)
class JsonAcceptor:
def __init__(self) -> None:
self.value = ""
def accept(self, json_dict: dict) -> None:
self.value = json.dumps(json_dict)
json_acceptor = JsonAcceptor()
logger.info(f"Preview Resolution = {pres}")
def is_openpose(module: str):
return "openpose" in module
# Only openpose preprocessor returns a JSON output, pass json_acceptor
# only when a JSON output is expected. This will make preprocessor cache
# work for all other preprocessors other than openpose ones. JSON acceptor
# instance are different every call, which means cache will never take
# effect.
# TODO: Maybe we should let `preprocessor` return a Dict to alleviate this issue?
# This requires changing all callsites though.
result = preprocessor.cached_call(
img,
resolution=pres,
slider_1=pthr_a,
slider_2=pthr_b,
low_vram=(
("clip" in module or module == "ip-adapter_face_id_plus")
and shared.opts.data.get("controlnet_clip_detector_on_cpu", False)
),
json_pose_callback=(
json_acceptor.accept
if is_openpose(module)
else None
),
model=model,
)
if not preprocessor.returns_image:
result = img
result = external_code.visualize_inpaint_mask(result)
return (
# Update to `generated_image`
gr.update(value=result, visible=True, interactive=False),
# preprocessor_preview
gr.update(value=True),
# openpose editor
*self.openpose_editor.update(json_acceptor.value),
)
self.trigger_preprocessor.click(
fn=run_annotator,
inputs=[
self.image,
self.module,
self.processor_res,
self.threshold_a,
self.threshold_b,
ControlNetUiGroup.a1111_context.img2img_w_slider
if self.is_img2img
else ControlNetUiGroup.a1111_context.txt2img_w_slider,
ControlNetUiGroup.a1111_context.img2img_h_slider
if self.is_img2img
else ControlNetUiGroup.a1111_context.txt2img_h_slider,
self.pixel_perfect,
self.resize_mode,
self.model,
],
outputs=[
self.generated_image,
self.preprocessor_preview,
*self.openpose_editor.outputs(),
],
)
def register_shift_preview(self):
def shift_preview(is_on):
return (
# generated_image
gr.update() if is_on else gr.update(value=None),
# generated_image_group
gr.update(visible=is_on),
# use_preview_as_input,
gr.update(visible=False), # Now this is automatically managed
# download_pose_link
gr.update() if is_on else gr.update(value=None),
# modal edit button
gr.update() if is_on else gr.update(visible=False),
)
self.preprocessor_preview.change(
fn=shift_preview,
inputs=[self.preprocessor_preview],
outputs=[
self.generated_image,
self.generated_image_group,
self.use_preview_as_input,
self.openpose_editor.download_link,
self.openpose_editor.modal,
],
show_progress=False,
)
def register_create_canvas(self):
self.open_new_canvas_button.click(
lambda: gr.Accordion.update(visible=True),
inputs=None,
outputs=self.create_canvas,
show_progress=False,
)
self.canvas_cancel_button.click(
lambda: gr.Accordion.update(visible=False),
inputs=None,
outputs=self.create_canvas,
show_progress=False,
)
def fn_canvas(h, w):
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255, gr.Accordion.update(
visible=False
)
self.canvas_create_button.click(
fn=fn_canvas,
inputs=[self.canvas_height, self.canvas_width],
outputs=[self.image, self.create_canvas],
show_progress=False,
)
def register_img2img_same_input(self):
def fn_same_checked(x):
return [
gr.update(value=None),
gr.update(value=None),
gr.update(value=False, visible=x),
] + [gr.update(visible=x)] * 4
self.upload_independent_img_in_img2img.change(
fn_same_checked,
inputs=self.upload_independent_img_in_img2img,
outputs=[
self.image,
self.batch_image_dir,
self.preprocessor_preview,
self.image_upload_panel,
self.trigger_preprocessor,
self.loopback,
self.resize_mode,
],
show_progress=False,
)
def register_shift_crop_input_image(self):
# A1111 < 1.7.0 compatibility.
if any(c is None for c in ControlNetUiGroup.a1111_context.img2img_inpaint_tabs):
self.inpaint_crop_input_image.visible = True
self.inpaint_crop_input_image.value = True
return
is_inpaint_tab = gr.State(False)
def shift_crop_input_image(is_inpaint: bool, inpaint_area: int):
# Note: inpaint_area (0: Whole picture, 1: Only masked)
# By default set value to True, as most preprocessors need cropped result.
return gr.update(value=True, visible=is_inpaint and inpaint_area == 1)
gradio_kwargs = dict(
fn=shift_crop_input_image,
inputs=[
is_inpaint_tab,
ControlNetUiGroup.a1111_context.img2img_inpaint_area,
],
outputs=[self.inpaint_crop_input_image],
show_progress=False,
)
for elem in ControlNetUiGroup.a1111_context.img2img_inpaint_tabs:
elem.select(fn=lambda: True, inputs=[], outputs=[is_inpaint_tab]).then(
**gradio_kwargs
)
for elem in ControlNetUiGroup.a1111_context.img2img_non_inpaint_tabs:
elem.select(fn=lambda: False, inputs=[], outputs=[is_inpaint_tab]).then(
**gradio_kwargs
)
ControlNetUiGroup.a1111_context.img2img_inpaint_area.change(**gradio_kwargs)
def register_shift_hr_options(self):
# A1111 version < 1.6.0.
if not ControlNetUiGroup.a1111_context.txt2img_enable_hr:
return
ControlNetUiGroup.a1111_context.txt2img_enable_hr.change(
fn=lambda checked: gr.update(visible=checked),
inputs=[ControlNetUiGroup.a1111_context.txt2img_enable_hr],
outputs=[self.hr_option],
show_progress=False,
)
def register_shift_upload_mask(self):
"""Controls whether the upload mask input should be visible."""
self.mask_upload.change(
fn=lambda checked: (
# Clear mask_image if unchecked.
(gr.update(visible=False), gr.update(value=None))
if not checked
else (gr.update(visible=True), gr.update())
),
inputs=[self.mask_upload],
outputs=[self.mask_image_group, self.mask_image],
show_progress=False,
)
if self.upload_independent_img_in_img2img is not None:
self.upload_independent_img_in_img2img.change(
fn=lambda checked: (
# Uncheck `upload_mask` when not using independent input.
gr.update(visible=False, value=False)
if not checked
else gr.update(visible=True)
),
inputs=[self.upload_independent_img_in_img2img],
outputs=[self.mask_upload],
show_progress=False,
)
def register_sync_batch_dir(self):
def determine_batch_dir(batch_dir, fallback_dir, fallback_fallback_dir):
if batch_dir:
return batch_dir
elif fallback_dir:
return fallback_dir
else:
return fallback_fallback_dir
batch_dirs = [
self.batch_image_dir,
ControlNetUiGroup.global_batch_input_dir,
ControlNetUiGroup.a1111_context.img2img_batch_input_dir,
]
for batch_dir_comp in batch_dirs:
subscriber = getattr(batch_dir_comp, "blur", None)
if subscriber is None:
continue
subscriber(
fn=determine_batch_dir,
inputs=batch_dirs,
outputs=[self.batch_image_dir_state],
queue=False,
)
ControlNetUiGroup.a1111_context.img2img_batch_output_dir.blur(
fn=lambda a: a,
inputs=[ControlNetUiGroup.a1111_context.img2img_batch_output_dir],
outputs=[self.output_dir_state],
queue=False,
)
def register_clear_preview(self):
def clear_preview(x):
if x:
logger.info("Preview as input is cancelled.")
return gr.update(value=False), gr.update(value=None)
for comp in (
self.pixel_perfect,
self.module,
self.image,
self.processor_res,
self.threshold_a,
self.threshold_b,
self.upload_independent_img_in_img2img,
):
event_subscribers = []
if hasattr(comp, "edit"):
event_subscribers.append(comp.edit)
elif hasattr(comp, "click"):
event_subscribers.append(comp.click)
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
event_subscribers.append(comp.release)
elif hasattr(comp, "change"):
event_subscribers.append(comp.change)
if hasattr(comp, "clear"):
event_subscribers.append(comp.clear)
for event_subscriber in event_subscribers:
event_subscriber(
fn=clear_preview,
inputs=self.use_preview_as_input,
outputs=[self.use_preview_as_input, self.generated_image],
)
def register_multi_images_upload(self):
"""Register callbacks on merge tab multiple images upload."""
self.merge_clear_button.click(
fn=lambda: [],
inputs=[],
outputs=[self.merge_gallery],
).then(
fn=lambda x: gr.update(value=x + 1),
inputs=[self.update_unit_counter],
outputs=[self.update_unit_counter],
)
def upload_file(files, current_files):
return {file_d["name"] for file_d in current_files} | {
file.name for file in files
}
self.merge_upload_button.upload(
upload_file,
inputs=[self.merge_upload_button, self.merge_gallery],
outputs=[self.merge_gallery],
queue=False,
).then(
fn=lambda x: gr.update(value=x + 1),
inputs=[self.update_unit_counter],
outputs=[self.update_unit_counter],
)
def register_core_callbacks(self):
"""Register core callbacks that only involves gradio components defined
within this ui group."""
self.register_webcam_toggle()
self.register_webcam_mirror_toggle()
self.register_refresh_all_models()
self.register_build_sliders()
self.register_shift_preview()
self.register_shift_upload_mask()
self.register_create_canvas()
self.register_clear_preview()
self.register_multi_images_upload()
self.openpose_editor.register_callbacks(
self.generated_image,
self.use_preview_as_input,
self.model,
)
assert self.type_filter is not None
self.preset_panel.register_callbacks(
self,
self.type_filter,
*[
getattr(self, key)
for key in vars(external_code.ControlNetUnit()).keys()
],
)
self.advanced_weight_control.register_callbacks(
self.weight,
self.advanced_weighting,
self.type_filter,
self.update_unit_counter,
)
if self.is_img2img:
self.register_img2img_same_input()
def register_callbacks(self):
"""Register callbacks that involves A1111 context gradio components."""
# Prevent infinite recursion.
if self.callbacks_registered:
return
self.callbacks_registered = True
self.register_sd_version_changed()
self.register_send_dimensions()
self.register_run_annotator()
self.register_sync_batch_dir()
if self.is_img2img:
self.register_shift_crop_input_image()
else:
self.register_shift_hr_options()
@staticmethod
def register_input_mode_sync(ui_groups: List["ControlNetUiGroup"]):
"""
- ui_group.input_mode should be updated when user switch tabs.
- Loopback checkbox should only be visible if at least one ControlNet unit
is set to batch mode.
Argument:
ui_groups: All ControlNetUiGroup instances defined in current Script context.
Returns:
None
"""
if not ui_groups:
return
for ui_group in ui_groups:
batch_fn = lambda: InputMode.BATCH
simple_fn = lambda: InputMode.SIMPLE
merge_fn = lambda: InputMode.MERGE
for input_tab, fn in (
(ui_group.upload_tab, simple_fn),
(ui_group.batch_tab, batch_fn),
(ui_group.merge_tab, merge_fn),
):
# Sync input_mode.
input_tab.select(
fn=fn,
inputs=[],
outputs=[ui_group.input_mode],
show_progress=False,
).then(
# Update visibility of loopback checkbox.
fn=lambda *mode_values: (
(
gr.update(
visible=any(m == InputMode.BATCH for m in mode_values)
),
)
* len(ui_groups)
),
inputs=[g.input_mode for g in ui_groups],
outputs=[g.loopback for g in ui_groups],
show_progress=False,
)
@staticmethod
def reset():
ControlNetUiGroup.a1111_context = A1111Context()
ControlNetUiGroup.all_ui_groups = []
@staticmethod
def try_register_all_callbacks():
unit_count = shared.opts.data.get("control_net_unit_count", 3)
all_unit_count = unit_count * 2 # txt2img + img2img.
if (
# All A1111 components ControlNet units care about are all registered.
ControlNetUiGroup.a1111_context.ui_initialized
and all_unit_count == len(ControlNetUiGroup.all_ui_groups)
and all(
g.ui_initialized and (not g.callbacks_registered)
for g in ControlNetUiGroup.all_ui_groups
)
):
for ui_group in ControlNetUiGroup.all_ui_groups:
ui_group.register_callbacks()
ControlNetUiGroup.register_input_mode_sync(
[g for g in ControlNetUiGroup.all_ui_groups if g.is_img2img]
)
ControlNetUiGroup.register_input_mode_sync(
[g for g in ControlNetUiGroup.all_ui_groups if not g.is_img2img]
)
logger.info("ControlNet UI callback registered.")
@staticmethod
def on_after_component(component, **_kwargs):
"""Register the A1111 component."""
if getattr(component, "elem_id", None) == "img2img_batch_inpaint_mask_dir":
ControlNetUiGroup.global_batch_input_dir.render()
return
ControlNetUiGroup.a1111_context.set_component(component)
ControlNetUiGroup.try_register_all_callbacks()
|