Spaces:
Runtime error
Runtime error
File size: 6,869 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# From https://github.com/victorca25/iNNfer/blob/main/utils/utils.py
from __future__ import annotations
import math
import os
import re
from dataclasses import dataclass
from typing import List, Tuple, Union
import numpy as np
from nodes.log import logger
Size = Tuple[int, int]
"""
The width and height (in that order) of an image.
"""
NUMBERS = re.compile(r"(\d+)")
ALPHABET = [*"ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
def round_half_up(number: Union[float, int]) -> int:
"""
Python's `round` method implements round-half-to-even rounding which is very unintuitive.
This function implements round-half-up rounding.
Round half up is consistent with JavaScript's `Math.round`.
https://en.wikipedia.org/wiki/Rounding#Rounding_to_the_nearest_integer
"""
return math.floor(number + 0.5)
def get_h_w_c(image: np.ndarray) -> Tuple[int, int, int]:
"""Returns the height, width, and number of channels."""
h, w = image.shape[:2]
c = 1 if image.ndim == 2 else image.shape[2]
return h, w, c
def alphanumeric_sort(value: str) -> List[Union[str, int]]:
"""Key function to sort strings containing numbers by proper
numerical order."""
lcase_value = value.upper()
parts = NUMBERS.split(lcase_value)
parts[1::2] = map(int, parts[1::2])
return parts # type: ignore
__SPLIT_SNAKE_CASE = re.compile(r"(\d+|_+)")
__SPLIT_PASCAL_CASE = re.compile(r"(\d+)|(?<=[a-z])(?=[A-Z])")
def split_snake_case(s: str) -> List[str]:
"""Splits a snake case identifier into its parts. E.g. `SNAKE_CASE` -> [`snake`, `case`]"""
return [
x.lower() for x in __SPLIT_SNAKE_CASE.split(s) if x and not x.startswith("_")
]
def split_pascal_case(s: str) -> List[str]:
"""Splits a snake case identifier into its parts. E.g. `SNAKE_CASE` -> [`snake`, `case`]"""
return [
x.lower() for x in __SPLIT_PASCAL_CASE.split(s) if x and not x.startswith("_")
]
def join_pascal_case(words: List[str]) -> str:
return "".join([x.capitalize() for x in words])
__ABBREVIATIONS = {"rgb", "rgba"}
def smart_capitalize(word: str) -> str:
if word in __ABBREVIATIONS:
return word.upper()
return word.capitalize()
def join_space_case(words: List[str]) -> str:
return " ".join([smart_capitalize(x) for x in words])
def split_file_path(path: str) -> Tuple[str, str, str]:
"""
Returns the base directory, file name, and extension of the given file path.
"""
base, ext = os.path.splitext(path)
dirname, basename = os.path.split(base)
return dirname, basename, ext
def walk_error_handler(exception_instance):
logger.warning(
f"Exception occurred during walk: {exception_instance} Continuing..."
)
def list_all_files_sorted(
directory: str, ext_filter: Union[List[str], None] = None
) -> List[str]:
just_files: List[str] = []
for root, dirs, files in os.walk(
directory, topdown=True, onerror=walk_error_handler
):
dirs.sort(key=alphanumeric_sort)
for name in sorted(files, key=alphanumeric_sort):
filepath = os.path.join(root, name)
_base, ext = os.path.splitext(filepath)
if ext_filter is None or ext.lower() in ext_filter:
just_files.append(filepath)
return just_files
@dataclass(frozen=True)
class Padding:
top: int
right: int
bottom: int
left: int
@staticmethod
def all(value: int) -> "Padding":
return Padding(value, value, value, value)
@staticmethod
def to(value: Padding | int) -> Padding:
if isinstance(value, int):
return Padding.all(value)
return value
@property
def horizontal(self) -> int:
return self.left + self.right
@property
def vertical(self) -> int:
return self.top + self.bottom
@property
def empty(self) -> bool:
return self.top == 0 and self.right == 0 and self.bottom == 0 and self.left == 0
def scale(self, factor: int) -> Padding:
return Padding(
self.top * factor,
self.right * factor,
self.bottom * factor,
self.left * factor,
)
def min(self, other: Padding | int) -> Padding:
other = Padding.to(other)
return Padding(
min(self.top, other.top),
min(self.right, other.right),
min(self.bottom, other.bottom),
min(self.left, other.left),
)
def remove_from(self, image: np.ndarray) -> np.ndarray:
h, w, _ = get_h_w_c(image)
return image[
self.top : (h - self.bottom),
self.left : (w - self.right),
...,
]
@dataclass(frozen=True)
class Region:
x: int
y: int
width: int
height: int
@property
def size(self) -> Size:
return self.width, self.height
def scale(self, factor: int) -> Region:
return Region(
self.x * factor,
self.y * factor,
self.width * factor,
self.height * factor,
)
def intersect(self, other: Region) -> Region:
x = max(self.x, other.x)
y = max(self.y, other.y)
width = min(self.x + self.width, other.x + other.width) - x
height = min(self.y + self.height, other.y + other.height) - y
return Region(x, y, width, height)
def add_padding(self, pad: Padding) -> Region:
return Region(
x=self.x - pad.left,
y=self.y - pad.top,
width=self.width + pad.horizontal,
height=self.height + pad.vertical,
)
def remove_padding(self, pad: Padding) -> Region:
return self.add_padding(pad.scale(-1))
def child_padding(self, child: Region) -> Padding:
"""
Returns the padding `p` such that `child.add_padding(p) == self`.
"""
left = child.x - self.x
top = child.y - self.y
right = self.width - child.width - left
bottom = self.height - child.height - top
return Padding(top, right, bottom, left)
def read_from(self, image: np.ndarray) -> np.ndarray:
h, w, _ = get_h_w_c(image)
if (w, h) == self.size:
return image
return image[
self.y : (self.y + self.height),
self.x : (self.x + self.width),
...,
]
def write_into(self, lhs: np.ndarray, rhs: np.ndarray):
h, w, c = get_h_w_c(rhs)
assert (w, h) == self.size
assert c == get_h_w_c(lhs)[2]
if c == 1:
if lhs.ndim == 2 and rhs.ndim == 3:
rhs = rhs[:, :, 0]
if lhs.ndim == 3 and rhs.ndim == 2:
rhs = np.expand_dims(rhs, axis=2)
lhs[
self.y : (self.y + self.height),
self.x : (self.x + self.width),
...,
] = rhs
|