File size: 5,868 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import annotations

import math
from dataclasses import dataclass
from typing import Callable, List, Optional, Tuple

import numpy as np
from nodes.log import logger

from ...utils.utils import Padding, Region, Size, get_h_w_c
from ..image_utils import BorderType, create_border


def _pad_image(img: np.ndarray, min_size: Size):
    h, w, _ = get_h_w_c(img)

    min_w, min_h = min_size
    x = max(0, min_w - w) / 2
    y = max(0, min_h - h) / 2

    padding = Padding(math.floor(y), math.floor(x), math.ceil(y), math.ceil(x))

    return create_border(img, BorderType.REFLECT_MIRROR, padding), padding


@dataclass
class _Segment:
    start: int
    end: int
    startPadding: int
    endPadding: int

    @property
    def length(self) -> int:
        return self.end - self.start

    @property
    def padded_length(self) -> int:
        return self.end + self.endPadding - (self.start - self.startPadding)


def _exact_split_into_segments(length: int, exact: int, overlap: int) -> List[_Segment]:
    """
    Splits the given length into segments of `exact` (padded) length.
    Segments will overlap into each other with at least the given overlap.
    """
    if length == exact:
        # trivial
        return [_Segment(0, exact, 0, 0)]

    assert length > exact
    assert exact > overlap * 2

    result: List[_Segment] = []

    def add(s: _Segment):
        assert s.padded_length == exact
        result.append(s)

    # The current strategy is to go from left to right and to align segments
    # such that we use the least overlap possible. The last segment will then
    # be the smallest with potentially a lot of overlap.
    # While this is easy to implement, it's actually not ideal. Ideally, we
    # would want for the overlap to be distributed evenly between segments.
    # However, this is complex to implement and the current method also works.

    # we know that the first segment looks like this
    add(_Segment(0, exact - overlap, 0, overlap))

    while result[-1].end < length:
        startPadding = overlap
        start = result[-1].end
        end = start + exact - overlap * 2
        endPadding = overlap

        if end + endPadding >= length:
            # last segment
            endPadding = 0
            end = length
            startPadding = exact - (end - start)

        add(_Segment(start, end, startPadding, endPadding))

    return result


def _exact_split_into_regions(
    w: int,
    h: int,
    exact_w: int,
    exact_h: int,
    overlap: int,
) -> List[Tuple[Region, Padding]]:
    """
    Returns a list of disjoint regions along with padding.
    Each region plus its padding is guaranteed to have the given exact size.
    The padding (if not zero) is guaranteed to be at least the given overlap value.
    """

    # we can split x and y independently from each other and then combine the results
    x_segments = _exact_split_into_segments(w, exact_w, overlap)
    y_segments = _exact_split_into_segments(h, exact_h, overlap)

    logger.info(f"chaiNNer: image is split into {len(x_segments)}x{len(y_segments)} tiles each exactly {exact_w}x{exact_h}px")

    result: List[Tuple[Region, Padding]] = []
    for y in y_segments:
        for x in x_segments:
            result.append(
                (
                    Region(x.start, y.start, x.length, y.length),
                    Padding(y.startPadding, x.endPadding, y.endPadding, x.startPadding),
                )
            )
    return result


def _exact_split_without_padding(
    img: np.ndarray,
    exact_size: Size,
    upscale: Callable[[np.ndarray, Region], np.ndarray],
    overlap: int,
) -> np.ndarray:
    h, w, c = get_h_w_c(img)
    exact_w, exact_h = exact_size
    assert w >= exact_w and h >= exact_h

    if (w, h) == exact_size:
        return upscale(img, Region(0, 0, w, h))

    # To allocate the result image, we need to know the upscale factor first,
    # and we only get to know this factor after the first successful upscale.
    result: Optional[np.ndarray] = None
    scale: int = 0

    regions = _exact_split_into_regions(w, h, exact_w, exact_h, overlap)
    for tile, pad in regions:
        padded_tile = tile.add_padding(pad)

        upscale_result = upscale(padded_tile.read_from(img), padded_tile)

        # figure out by how much the image was upscaled by
        up_h, up_w, _ = get_h_w_c(upscale_result)
        current_scale = up_h // padded_tile.height
        assert current_scale > 0
        assert padded_tile.height * current_scale == up_h
        assert padded_tile.width * current_scale == up_w

        if result is None:
            # allocate the result image
            scale = current_scale
            result = np.zeros((h * scale, w * scale, c), dtype=np.float32)

        assert current_scale == scale

        # remove overlap padding
        upscale_result = pad.scale(scale).remove_from(upscale_result)

        # copy into result image
        tile.scale(scale).write_into(result, upscale_result)

    assert result is not None

    # remove initially added padding
    return result


def exact_split(
    img: np.ndarray,
    exact_size: Size,
    upscale: Callable[[np.ndarray, Region], np.ndarray],
    overlap: int = 16,
) -> np.ndarray:
    """
    Splits the image into tiles with exactly the given tile size.

    If the image is smaller than the given size, then it will be padded.
    """

    # ensure that the image is at least as large as the given size
    img, base_padding = _pad_image(img, exact_size)
    h, w, _ = get_h_w_c(img)

    result = _exact_split_without_padding(img, exact_size, upscale, overlap)
    scale = get_h_w_c(result)[0] // h

    if base_padding.empty:
        return result

    # remove initially added padding
    return (
        Region(0, 0, w, h).remove_padding(base_padding).scale(scale).read_from(result)
    )