Spaces:
Runtime error
Runtime error
File size: 4,705 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from typing import List, Tuple
import numpy as np
import onnxruntime as ort
from cv2 import (
BORDER_DEFAULT,
COLOR_BGR2RGB,
COLOR_BGRA2RGB,
COLOR_RGBA2BGRA,
MORPH_ELLIPSE,
MORPH_OPEN,
GaussianBlur,
cvtColor,
getStructuringElement,
morphologyEx,
)
from PIL import Image
from PIL.Image import Image as PILImage
from scipy.ndimage import binary_erosion
from ...impl.image_utils import normalize
from ...utils.utils import get_h_w_c
from .pymatting.estimate_alpha_cf import estimate_alpha_cf
from .pymatting.estimate_foreground_ml import estimate_foreground_ml
from .pymatting.util import stack_images
from .session_factory import new_session
kernel = getStructuringElement(MORPH_ELLIPSE, (3, 3))
def alpha_matting_cutout(
img: PILImage,
mask: PILImage,
foreground_threshold: int,
background_threshold: int,
erode_structure_size: int,
) -> PILImage:
if img.mode == "RGBA" or img.mode == "CMYK":
img = img.convert("RGB")
npimg = np.asarray(img)
npmask = np.asarray(mask)
is_foreground = npmask > foreground_threshold
is_background = npmask < background_threshold
structure = None
if erode_structure_size > 0:
structure = np.ones(
(erode_structure_size, erode_structure_size), dtype=np.uint8
)
is_foreground = binary_erosion(is_foreground, structure=structure)
is_background = binary_erosion(is_background, structure=structure, border_value=1)
trimap = np.full(npmask.shape, dtype=np.uint8, fill_value=128)
trimap[is_foreground] = 255
trimap[is_background] = 0
img_normalized = npimg / 255.0
trimap_normalized = trimap / 255.0
alpha = estimate_alpha_cf(img_normalized, trimap_normalized)
foreground = estimate_foreground_ml(img_normalized, alpha)
cutout = stack_images(foreground, alpha)
cutout = np.clip(cutout * 255, 0, 255).astype(np.uint8) # type: ignore
cutout = Image.fromarray(cutout)
return cutout
def naive_cutout(img: PILImage, mask: PILImage) -> PILImage:
empty = Image.new("RGBA", (img.size), 0)
cutout = Image.composite(img, empty, mask)
return cutout
def get_concat_v_multi(imgs: List[PILImage]) -> PILImage:
pivot = imgs.pop(0)
for im in imgs:
pivot = get_concat_v(pivot, im)
return pivot
def get_concat_v(img1: PILImage, img2: PILImage) -> PILImage:
dst = Image.new("RGBA", (img1.width, img1.height + img2.height))
dst.paste(img1, (0, 0))
dst.paste(img2, (0, img1.height))
return dst
def post_process(mask: np.ndarray) -> np.ndarray:
"""
Post Process the mask for a smooth boundary by applying Morphological Operations
Research based on paper: https://www.sciencedirect.com/science/article/pii/S2352914821000757
args:
mask: Binary Numpy Mask
"""
mask = morphologyEx(mask, MORPH_OPEN, kernel)
mask = GaussianBlur(mask, (5, 5), sigmaX=2, sigmaY=2, borderType=BORDER_DEFAULT)
mask = np.where(mask < 127, 0, 255).astype( # type: ignore
np.uint8
) # convert again to binary
return mask
def remove_bg(
img: np.ndarray,
ort_session: ort.InferenceSession,
alpha_matting: bool = False,
alpha_matting_foreground_threshold: int = 240,
alpha_matting_background_threshold: int = 10,
alpha_matting_erode_size: int = 10,
post_process_mask: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
# Flip channels to RGB mode and convert to PIL Image
img = (img * 255).astype(np.uint8)
_, _, c = get_h_w_c(img)
if c == 3:
img = cvtColor(img, COLOR_BGR2RGB)
elif c == 4:
img = cvtColor(img, COLOR_BGRA2RGB)
pimg = Image.fromarray(img)
session = new_session(ort_session)
masks = session.predict(pimg)
cutouts = []
assert len(masks) > 0, "Model failed to generate masks"
for mask in masks:
if post_process_mask:
mask = Image.fromarray(post_process(np.array(mask)))
if alpha_matting:
try:
cutout = alpha_matting_cutout(
pimg,
mask,
alpha_matting_foreground_threshold,
alpha_matting_background_threshold,
alpha_matting_erode_size,
)
except ValueError:
cutout = naive_cutout(pimg, mask)
else:
cutout = naive_cutout(pimg, mask)
cutouts.append(cutout)
cutout = pimg
if len(cutouts) > 0:
cutout = get_concat_v_multi(cutouts)
return cvtColor(normalize(np.asarray(cutout)), COLOR_RGBA2BGRA), normalize(np.asarray(mask)) # type: ignore pylint: disable=undefined-loop-variable
|