File size: 1,979 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import annotations
from weakref import WeakKeyDictionary
import onnxruntime as ort


def create_inference_session(
    model,
    gpu_index: int,
    execution_provider: str,
    should_tensorrt_fp16: bool = False,
    tensorrt_cache_path: str | None = None,
) -> ort.InferenceSession:
    if execution_provider == "TensorrtExecutionProvider":
        providers = [
            (
                "TensorrtExecutionProvider",
                {
                    "device_id": gpu_index,
                    "trt_engine_cache_enable": tensorrt_cache_path is not None,
                    "trt_engine_cache_path": tensorrt_cache_path,
                    "trt_fp16_enable": should_tensorrt_fp16,
                },
            ),
            (
                "CUDAExecutionProvider",
                {
                    "device_id": gpu_index,
                },
            ),
            "CPUExecutionProvider",
        ]
    elif execution_provider == "CUDAExecutionProvider":
        providers = [
            (
                "CUDAExecutionProvider",
                {
                    "device_id": gpu_index,
                },
            ),
            "CPUExecutionProvider",
        ]
    else:
        providers = [execution_provider, "CPUExecutionProvider"]

    session = ort.InferenceSession(model.bytes, providers=providers)
    return session


__session_cache: WeakKeyDictionary[
    any, ort.InferenceSession
] = WeakKeyDictionary()


def get_onnx_session(
    model: any,
    gpu_index: int,
    execution_provider: str,
    should_tensorrt_fp16: bool,
    tensorrt_cache_path: str | None = None,
) -> ort.InferenceSession:
    cached = __session_cache.get(model)
    if cached is None:
        cached = create_inference_session(
            model,
            gpu_index,
            execution_provider,
            should_tensorrt_fp16,
            tensorrt_cache_path,
        )
        __session_cache[model] = cached
    return cached