Spaces:
Runtime error
Runtime error
File size: 26,365 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
import os
from copy import deepcopy
from io import BufferedReader, StringIO
from json import load as jload
from typing import Dict, List, Tuple, Union
import numpy as np
from nodes.log import logger
from ...utils.checked_cast import checked_cast
param_schema_file = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "param_schema.json"
)
with open(param_schema_file, encoding="utf-8") as schemaf:
param_schema = jload(schemaf)
DTYPE_FP32 = b"\x00\x00\x00\x00"
DTYPE_FP16 = b"\x47\x6b\x30\x01"
DTYPE_DICT = {b"\x00\x00\x00\x00": np.float32, b"\x47\x6b\x30\x01": np.float16}
class UnaryOpTypes:
ABS = 0
NEG = 1
FLOOR = 2
CEIL = 3
SQUARE = 4
SQRT = 5
RSQ = 6
EXP = 7
LOG = 8
SIN = 9
COS = 10
TAN = 11
ASIN = 12
ACOS = 13
ATAN = 14
RECIPROCAL = 15
TANH = 16
class BinaryOpTypes:
ADD = 0
SUB = 1
MUL = 2
DIV = 3
MAX = 4
MIN = 5
POW = 6
RSUB = 7
RDIV = 8
class CastElementTypes:
AUTO = 0
FLOAT32 = 1
FLOAT16 = 2
INT8 = 3
BFLOAT16 = 4
class EltwiseOpTypes:
PROD = 0
SUM = 1
MAX = 2
class GruDirectionFlags:
FORWARD = 0
REVERSE = 1
BIDIRECTIONAL = 2
class InterpResizeTypes:
NEAREST = 1
BILINEAR = 2
BICUBIC = 3
class NormalizeEpsModes:
CAFFE = 0
PYTORCH = 1
TENSORFLOW = 2
class PaddingTypes:
CONSTANT = 0
REPLICATE = 1
REFLECT = 2
class PadModes:
FULL = 0
VALID = 1
SAMEUPPER = 2
SAMELOWER = 3
class PermuteOrderTypes:
WH_WHC_WHDC = 0
HW_HWC_HWDC = 1
WCH_WDHC = 2
CWH_DWHC = 3
HCW_HDWC = 4
CHW_DHWC = 5
WHCD = 6
HWCD = 7
WCHD = 8
CWHD = 9
HCWD = 10
CHWD = 11
WDCH = 12
DWCH = 13
WCDH = 14
CWDH = 15
DCWH = 16
CDWH = 17
HDCW = 18
DHCW = 19
HCDW = 20
CHDW = 21
DCHW = 22
CDHW = 23
class ReductionOpTypes:
SUM = 0
ASUM = 1
SUMSQ = 2
MEAN = 3
MAX = 4
MIN = 5
PROD = 6
L1 = 7
L2 = 8
LOGSUM = 9
LOGSUMEXP = 10
class GridSampleSampleTypes:
NEAREST = 1
BILINEAR = 2
BICUBIC = 3
class GridSamplePadModes:
ZEROS = 1
BORDER = 2
REFLECTION = 3
class LrnRegionTypes:
ACROSS_CHANNELS = 0
WITH_CHANNEL = 1
class NcnnWeight:
def __init__(self, weight: np.ndarray, quantize_tag: bytes = b""):
self.quantize_tag = quantize_tag
self.weight = weight
@property
def shape(self) -> tuple:
return self.weight.shape
class NcnnParam:
def __init__(
self,
pid: str,
name: str,
value: Union[float, int, List[Union[float, int]]],
default: Union[float, int],
) -> None:
self.id: str = pid
self.name: str = name
self.value: Union[float, int, List[Union[float, int]]] = value
self.default: Union[float, int] = default
class NcnnParamCollection:
def __init__(
self,
op: str,
param_dict: Union[Dict[int, NcnnParam], None] = None,
) -> None:
self.op: str = op
self.param_dict: Dict[int, NcnnParam] = {} if param_dict is None else param_dict
self.weight_order: Dict[str, List[int]] = (
param_schema[self.op]["weightOrder"] if self.op else {}
)
def __getitem__(self, pid: int) -> NcnnParam:
try:
return self.param_dict[pid]
except KeyError as exc:
idstr = str(pid)
param_dict = param_schema[self.op]
try:
param = param_dict[idstr]
except KeyError:
logger.error(f"chaiNNer: op {self.op} does not have param {pid}, please report")
raise
defaultValue = param["defaultValue"]
value = param["defaultValue"]
if isinstance(value, str):
for key, val in list(param_dict.items())[:-1]:
if value == val["paramPhase"]:
try:
value = self.param_dict[int(key)].value
except KeyError:
value = val["defaultValue"]
defaultValue = val["defaultValue"]
break
else:
msg = f"Op {self.op} does not have param {value}, please report"
raise KeyError(msg) from exc
return NcnnParam(idstr, param["paramPhase"], value, defaultValue)
def __setitem__(
self, pid: int, value: Union[float, int, List[Union[float, int]]]
) -> None:
idstr = str(pid)
param_dict = param_schema[self.op]
try:
param = param_dict[idstr]
except KeyError:
logger.error(f"chaiNNer: op {self.op} does not have param {idstr}, please report")
raise
name = param["paramPhase"]
def_val = param["defaultValue"]
self.param_dict[pid] = NcnnParam(idstr, name, value, def_val)
def __delitem__(self, key: int) -> None:
try:
del self.param_dict[key]
except KeyError:
pass
def __contains__(self, item) -> bool:
if item in self.param_dict:
return True
return False
def __str__(self) -> str:
output = ""
param_dict = param_schema[self.op]
self.param_dict = dict(sorted(self.param_dict.items()))
for v in self.param_dict.values():
if v.value == v.default:
continue
if isinstance(v.default, str):
pid = None
for key, val in list(param_dict.items())[:-1]:
if v.default == val["paramPhase"]:
pid = int(key)
break
else:
msg = f"Op {self.op} does not have param {v.default}, please report"
raise KeyError(msg)
# If a param that defaults to the value of another param, if it's value
# equals that of the second param or its default, skip writing it
if (
v.value == self.param_dict[pid].value
or v.value == self.param_dict[pid].default
):
continue
if isinstance(v.value, list):
output += " -233" + v.id.zfill(2) + "="
else:
output += " " + v.id + "="
if isinstance(v.value, float):
v_str = np.format_float_scientific(v.value, 6, False, exp_digits=2)
elif isinstance(v.value, list):
v_str = ",".join(
[
np.format_float_scientific(n, 6, False, exp_digits=2)
if isinstance(n, float)
else str(n)
for n in v.value
]
)
else:
v_str = str(v.value)
output += v_str
return output
def set_op(self, op: str) -> None:
self.op = op
self.weight_order = param_schema[op]["weightOrder"]
class NcnnLayer:
def __init__(
self,
op_type: str = "",
name: str = "",
num_inputs: int = 0,
num_outputs: int = 0,
inputs: Union[List[str], None] = None,
outputs: Union[List[str], None] = None,
params: Union[NcnnParamCollection, None] = None,
weight_data: Union[Dict[str, NcnnWeight], None] = None,
):
self.op_type: str = op_type
self.name: str = name
self.num_inputs: int = num_inputs
self.num_outputs: int = num_outputs
self.inputs: List[str] = [] if inputs is None else inputs
self.outputs: List[str] = [] if outputs is None else outputs
self.params: NcnnParamCollection = (
NcnnParamCollection(op_type) if params is None else params
)
self.weight_data: Dict[str, NcnnWeight] = (
{} if weight_data is None else weight_data
)
def add_param(
self, pid: int, value: Union[float, int, List[Union[float, int]]]
) -> None:
self.params[pid] = value
def add_weight(
self,
weight_name: str,
data: Union[float, int, np.ndarray],
quantize_tag: bytes = b"",
) -> int:
if isinstance(data, float):
data_array = np.array(data, np.float32)
elif isinstance(data, int):
data_array = np.array(data, np.int32)
else:
data_array = data
if quantize_tag == DTYPE_FP16:
data_array = data_array.astype(np.float16)
else:
# Since int8 not supported, all data that is not fp16 is fp32.
# This covers issues caused by converting fp16 ONNX models.
data_array = data_array.astype(np.float32)
self.weight_data[weight_name] = NcnnWeight(data_array, quantize_tag)
return len(quantize_tag) + len(data_array.tobytes())
class NcnnModel:
def __init__(
self,
node_count: int = 0,
blob_count: int = 0,
) -> None:
self.node_count: int = node_count
self.blob_count: int = blob_count
self.layers: List[NcnnLayer] = []
self.bin_length = 0
@property
def magic(self):
return "7767517"
@staticmethod
def load_from_file(param_path: str = "", bin_path: str = "") -> "NcnnModel":
if bin_path == "":
bin_path = param_path.replace(".param", ".bin")
elif param_path == "":
param_path = bin_path.replace(".bin", ".param")
model = NcnnModel()
with open(param_path, "r", encoding="utf-8") as paramf:
with open(bin_path, "rb") as binf:
paramf.readline()
counts = paramf.readline().strip().split(" ")
model.node_count = int(counts[0])
model.blob_count = int(counts[1])
for line in paramf:
op_type, layer = model.parse_param_layer(line)
layer.weight_data = model.load_layer_weights(binf, op_type, layer)
model.add_layer(layer)
binf.seek(0, os.SEEK_END)
model.bin_length = binf.tell()
return model
@staticmethod
def interp_layers(
a: NcnnLayer, b: NcnnLayer, alpha_a: float
) -> Tuple[NcnnLayer, bytes]:
weights_a = a.weight_data
weights_b = b.weight_data
weights_interp: Dict[str, NcnnWeight] = {}
layer_bytes = b""
if weights_a:
assert len(weights_a) == len(
weights_b
), "All corresponding nodes must have same number of weights"
layer_bytes_list = []
for weight_name, weight_a in weights_a.items():
try:
weight_b = weights_b[weight_name]
except KeyError:
logger.error(f"chaiNNer: weights in node {a.name} and {b.name} do not correspond")
raise
assert (
weight_a.shape == weight_b.shape
), "Corresponding weights must have the same size and shape"
assert len(weight_a.quantize_tag) == len(
weight_b.quantize_tag
), "Weights must either both have or both not have a quantize tag"
if (
weight_a.quantize_tag == DTYPE_FP16
and weight_b.quantize_tag == DTYPE_FP32
):
weight_b.quantize_tag = DTYPE_FP16
weight_b.weight = weight_b.weight.astype(np.float16)
elif (
weight_a.quantize_tag == DTYPE_FP32
and weight_b.quantize_tag == DTYPE_FP16
):
weight_a.quantize_tag = DTYPE_FP16
weight_a.weight = weight_a.weight.astype(np.float16)
weight_c = NcnnWeight(
(weight_a.weight * alpha_a + weight_b.weight * (1 - alpha_a)),
weight_a.quantize_tag,
)
layer_bytes_list.append(
weight_c.quantize_tag + weight_c.weight.tobytes()
)
weights_interp[weight_name] = weight_c
layer_bytes = b"".join(layer_bytes_list)
return (
NcnnLayer(
a.op_type,
a.name,
a.num_inputs,
a.num_outputs,
a.inputs,
a.outputs,
a.params,
weights_interp,
),
layer_bytes,
)
def add_layer(self, layer: NcnnLayer) -> None:
self.layers.append(layer)
def parse_param_layer(self, layer_str: str) -> Tuple[str, NcnnLayer]:
param_list = layer_str.strip().split()
op_type, name = param_list[:2]
assert op_type != "MemoryData", "This NCNN param file contains invalid layers"
num_inputs = int(param_list[2])
num_outputs = int(param_list[3])
input_end = 4 + num_inputs
output_end = input_end + num_outputs
inputs = list(param_list[4:input_end])
outputs = list(param_list[input_end:output_end])
params = param_list[output_end:]
param_dict = {}
for param_str in params:
ks, vs = param_str.split("=")
k = int(ks)
if k < 0:
v = []
for vi in vs.split(","):
vi = float(vi) if "." in vi or "e" in vi else int(vi)
v.append(vi)
k = abs(k + 23300)
ks = str(k)
elif "." in vs or "e" in vs:
v = float(vs)
else:
v = int(vs)
param = NcnnParam(
ks,
param_schema[op_type][ks]["paramPhase"],
v,
param_schema[op_type][ks]["defaultValue"],
)
param_dict[k] = param
return op_type, NcnnLayer(
op_type,
name,
num_inputs,
num_outputs,
inputs,
outputs,
NcnnParamCollection(op_type, param_dict),
)
def load_layer_weights(
self, binf: BufferedReader, op_type: str, layer: NcnnLayer
) -> Dict[str, NcnnWeight]:
weight_dict = {}
if op_type == "BatchNorm":
channels_data = checked_cast(int, layer.params[0].value) * 4
slope = np.frombuffer(binf.read(channels_data), np.float32)
weight_dict["slope"] = NcnnWeight(slope)
mean = np.frombuffer(binf.read(channels_data), np.float32)
weight_dict["mean"] = NcnnWeight(mean)
variance = np.frombuffer(binf.read(channels_data), np.float32)
weight_dict["variance"] = NcnnWeight(variance)
bias = np.frombuffer(binf.read(channels_data), np.float32)
weight_dict["bias"] = NcnnWeight(bias)
elif op_type in ("Convolution", "ConvolutionDepthWise"):
quantize_tag = binf.read(4)
dtype = DTYPE_DICT[quantize_tag]
weight_data_length = checked_cast(int, layer.params[6].value)
weight_data_size = (
weight_data_length * 2
if quantize_tag == DTYPE_FP16
else weight_data_length * 4
)
has_bias = layer.params[5].value
num_filters = checked_cast(int, layer.params[0].value)
kernel_w = checked_cast(int, layer.params[1].value)
kernel_h = checked_cast(int, layer.params[11].value)
if op_type == "ConvolutionDepthWise":
group = checked_cast(int, layer.params[7].value)
num_input = (
weight_data_length // (num_filters // group) // kernel_w // kernel_h
)
shape = (
group,
num_filters // group,
num_input // group,
kernel_h,
kernel_w,
)
else:
num_input = weight_data_length // num_filters // kernel_w // kernel_h
shape = (num_filters, num_input, kernel_h, kernel_w)
weight_data = np.frombuffer(binf.read(weight_data_size), dtype)
weight_data = weight_data.reshape(shape)
weight_dict["weight"] = NcnnWeight(weight_data, quantize_tag)
if has_bias:
bias_data_size = num_filters * 4
bias_data = np.frombuffer(binf.read(bias_data_size), np.float32)
weight_dict["bias"] = NcnnWeight(bias_data)
elif op_type == "Deconvolution":
quantize_tag = binf.read(4)
dtype = DTYPE_DICT[quantize_tag]
weight_data_length = checked_cast(int, layer.params[6].value)
weight_data_size = (
weight_data_length * 2
if quantize_tag == DTYPE_FP16
else weight_data_length * 4
)
has_bias = layer.params[5].value
num_filters = checked_cast(int, layer.params[0].value)
kernel_w = checked_cast(int, layer.params[1].value)
kernel_h = checked_cast(int, layer.params[11].value)
num_input = weight_data_length // num_filters // kernel_w // kernel_h
shape = (num_filters, num_input, kernel_h, kernel_w)
weight_data = np.frombuffer(binf.read(weight_data_size), dtype)
weight_data = weight_data.reshape(shape)
weight_dict["weight"] = NcnnWeight(weight_data, quantize_tag)
if has_bias:
bias_data_size = num_filters * 4
bias_data = np.frombuffer(binf.read(bias_data_size), np.float32)
weight_dict["bias"] = NcnnWeight(bias_data)
elif op_type == "InnerProduct":
quantize_tag = binf.read(4)
dtype = DTYPE_DICT[quantize_tag]
weight_data_length = layer.params[2].value
assert isinstance(weight_data_length, int), "Weight data size must be int"
weight_data_size = (
weight_data_length * 2
if quantize_tag == DTYPE_FP16
else weight_data_length * 4
)
weight_data = np.frombuffer(binf.read(weight_data_size), dtype)
num_output = layer.params[0].value
assert isinstance(num_output, int), "Num output must be int"
num_input = weight_data_length // num_output
weight_data = weight_data.reshape((num_input, num_output))
weight_dict["weight"] = NcnnWeight(weight_data, quantize_tag)
has_bias = layer.params[1].value
if has_bias == 1:
bias_data_size = num_output * 4
bias_data = np.frombuffer(binf.read(bias_data_size), np.float32)
weight_dict["bias"] = NcnnWeight(bias_data)
elif op_type == "PReLU":
num_slope = layer.params[0].value
assert isinstance(num_slope, int), "Num slopes must be int"
slope_data_size = num_slope * 4
slope_data = np.frombuffer(binf.read(slope_data_size), np.float32)
weight_dict["slope"] = NcnnWeight(slope_data)
elif op_type == "Scale":
scale_data_length = layer.params[0].value
assert isinstance(scale_data_length, int), "Scale data size must be int"
if scale_data_length != -233:
quantize_tag = binf.read(4)
dtype = DTYPE_DICT[quantize_tag]
scale_data_size = (
scale_data_length * 2
if quantize_tag == DTYPE_FP16
else scale_data_length * 4
)
scale_data = np.frombuffer(binf.read(scale_data_size), dtype)
weight_dict["weight"] = NcnnWeight(scale_data, quantize_tag)
has_bias = layer.params[1].value
if has_bias == 1:
bias_data = np.frombuffer(
binf.read(scale_data_length * 4), np.float32
)
weight_dict["bias"] = NcnnWeight(bias_data)
else:
if len(layer.params.weight_order) != 0:
error_msg = f"Load weights not added for {op_type} yet, please report"
raise ValueError(error_msg)
return weight_dict
def write_param(self, filename: str = "") -> str:
with StringIO() as p:
p.write(f"{self.magic}\n{self.node_count} {self.blob_count}\n")
for layer in self.layers:
if layer.op_type == "ncnnfused":
continue
p.write(
f"{layer.op_type:<16}"
f" {layer.name:<24}"
f" {layer.num_inputs}"
f" {layer.num_outputs}"
)
if layer.inputs:
p.write(f" {' '.join(layer.inputs)}")
if layer.outputs:
p.write(f" {' '.join(layer.outputs)}")
if layer.params.param_dict:
param_str = str(layer.params)
if param_str:
p.write(f"{param_str}")
p.write("\n")
if filename:
with open(filename, "w", encoding="utf-8") as f:
f.write(p.getvalue())
return ""
else:
return p.getvalue()
def serialize_weights(self) -> bytes:
layer_weights = [
b"".join((w.quantize_tag, np.ndarray.tobytes(w.weight)))
for l in self.layers
for w in l.weight_data.values()
if l.weight_data and l.op_type != "ncnnfused"
]
return b"".join(layer_weights)
def write_bin(self, filename: str) -> None:
with open(filename, "wb") as f:
f.write(self.serialize_weights())
def interpolate(self, model_b: "NcnnModel", alpha: float) -> "NcnnModel":
interp_model = deepcopy(self)
layer_a_weights = [(i, l) for i, l in enumerate(self.layers) if l.weight_data]
layer_b_weights = [
(i, l) for i, l in enumerate(model_b.layers) if l.weight_data
]
assert len(layer_a_weights) == len(
layer_b_weights
), "Models must have same number of layers containing weights"
weight_bytes_list = []
for layer_a, layer_b in zip(layer_a_weights, layer_b_weights):
interp_layer, layer_bytes = NcnnModel.interp_layers(
layer_a[1], layer_b[1], alpha
)
interp_model.layers[layer_a[0]] = interp_layer
weight_bytes_list.append(layer_bytes)
return interp_model
@property
def bin(self) -> bytes:
return self.serialize_weights()
class NcnnModelWrapper:
def __init__(self, model: NcnnModel) -> None:
self.model: NcnnModel = model
scale, in_nc, out_nc, nf, fp = NcnnModelWrapper.get_broadcast_data(model)
self.scale: int = scale
self.nf: int = nf
self.in_nc: int = in_nc
self.out_nc: int = out_nc
self.fp: str = fp
@staticmethod
def get_broadcast_data(model: NcnnModel) -> Tuple[int, int, int, int, str]:
scale = 1.0
in_nc = 0
out_nc = 0
nf = 0
fp = "fp32"
pixel_shuffle = 1
found_first_conv = False
current_conv = None
for i, layer in enumerate(model.layers):
if layer.op_type == "Interp":
try:
if (
model.layers[i + 1].op_type != "BinaryOp"
and model.layers[i + 1].params[0].value != 0
):
scale *= checked_cast(float, layer.params[1].value)
except IndexError:
scale *= checked_cast(float, layer.params[1].value)
elif layer.op_type == "PixelShuffle":
scale *= checked_cast(int, layer.params[0].value)
pixel_shuffle *= checked_cast(int, layer.params[0].value)
elif layer.op_type in (
"Convolution",
"Convolution1D",
"ConvolutionDepthWise",
):
if found_first_conv is not True:
nf, in_nc = NcnnModelWrapper.get_nf_and_in_nc(layer)
if layer.weight_data["weight"].quantize_tag == DTYPE_FP16:
fp = "fp16"
found_first_conv = True
scale /= checked_cast(int, layer.params[3].value)
current_conv = layer
elif layer.op_type in ("Deconvolution", "DeconvolutionDepthWise"):
if found_first_conv is not True:
nf, in_nc = NcnnModelWrapper.get_nf_and_in_nc(layer)
found_first_conv = True
scale *= checked_cast(int, layer.params[3].value)
current_conv = layer
assert (
current_conv is not None
), "Cannot broadcast; model has no Convolution layers"
out_nc = checked_cast(int, current_conv.params[0].value) // pixel_shuffle**2
assert scale >= 1, "Models with scale less than 1x not supported"
assert scale % 1 == 0, f"Model not supported, scale {scale} is not an integer"
return int(scale), in_nc, out_nc, nf, fp
@staticmethod
def get_nf_and_in_nc(layer: NcnnLayer) -> Tuple[int, int]:
nf = layer.params[0].value
kernel_w = layer.params[1].value
try:
kernel_h = layer.params[11].value
except KeyError:
kernel_h = kernel_w
weight_data_size = layer.params[6].value
assert (
isinstance(nf, int)
and isinstance(kernel_w, int)
and isinstance(kernel_h, int)
and isinstance(weight_data_size, int)
), "Out nc, kernel width and height, and weight data size must all be ints"
in_nc = weight_data_size // nf // kernel_w // kernel_h
return nf, in_nc
|