Spaces:
Runtime error
Runtime error
File size: 13,006 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
from __future__ import annotations
import itertools
import math
import os
import random
import string
from enum import Enum
from typing import List, Tuple
import cv2
import numpy as np
from ..utils.utils import Padding, get_h_w_c, split_file_path
from .color.color import Color
MAX_VALUES_BY_DTYPE = {
np.dtype("int8").name: 127,
np.dtype("uint8").name: 255,
np.dtype("int16").name: 32767,
np.dtype("uint16").name: 65535,
np.dtype("int32").name: 2147483647,
np.dtype("uint32").name: 4294967295,
np.dtype("int64").name: 9223372036854775807,
np.dtype("uint64").name: 18446744073709551615,
np.dtype("float32").name: 1.0,
np.dtype("float64").name: 1.0,
}
class FillColor(Enum):
AUTO = -1
BLACK = 0
TRANSPARENT = 1
def get_color(self, channels: int):
"""Select how to fill negative space that results from rotation"""
if self == FillColor.AUTO:
fill_color = (0,) * channels
elif self == FillColor.BLACK:
fill_color = (0,) * channels if channels < 4 else (0, 0, 0, 1)
else:
fill_color = (0, 0, 0, 0)
return fill_color
class FlipAxis(Enum):
HORIZONTAL = 1
VERTICAL = 0
BOTH = -1
NONE = 2
def flip(self, img: np.ndarray) -> np.ndarray:
if self == FlipAxis.NONE:
return img
return cv2.flip(img, self.value)
class BorderType(Enum):
REFLECT_MIRROR = 4
WRAP = 3
REPLICATE = 1
BLACK = 0
WHITE = 6
TRANSPARENT = 5
CUSTOM_COLOR = 7
class NormalMapType(Enum):
DIRECTX = "DirectX"
OPENGL = "OpenGL"
OCTAHEDRAL = "Octahedral"
def convert_to_BGRA(img: np.ndarray, in_c: int) -> np.ndarray:
assert in_c in (1, 3, 4), f"Number of channels ({in_c}) unexpected"
if in_c == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
elif in_c == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
return img.copy()
def _get_iinfo(img: np.ndarray) -> np.iinfo | None:
try:
return np.iinfo(img.dtype)
except:
return None
def normalize(img: np.ndarray) -> np.ndarray:
if img.dtype != np.float32:
info = _get_iinfo(img)
img = img.astype(np.float32)
if info is not None:
img /= info.max
if info.min == 0:
# we don't need to clip
return img
# we own `img`, so it's okay to write to it
return np.clip(img, 0, 1, out=img)
return np.clip(img, 0, 1)
def to_uint8(
img: np.ndarray,
normalized=False,
) -> np.ndarray:
"""
Returns a new uint8 image with the given image data.
If `normalized` is `False`, then the image will be normalized before being converted to uint8.
"""
if img.dtype == np.uint8:
return img.copy()
if not normalized or img.dtype != np.float32:
img = normalize(img)
return (img * 255).round().astype(np.uint8)
def to_uint16(
img: np.ndarray,
normalized=False,
) -> np.ndarray:
"""
Returns a new uint8 image with the given image data.
If `normalized` is `False`, then the image will be normalized before being converted to uint8.
"""
if img.dtype == np.uint16:
return img.copy()
if not normalized or img.dtype != np.float32:
img = normalize(img)
return (img * 65535).round().astype(np.uint16)
def shift(img: np.ndarray, amount_x: int, amount_y: int, fill: FillColor) -> np.ndarray:
c = get_h_w_c(img)[2]
if fill == FillColor.TRANSPARENT:
img = convert_to_BGRA(img, c)
fill_color = fill.get_color(c)
h, w, _ = get_h_w_c(img)
translation_matrix = np.asfarray(
[[1, 0, amount_x], [0, 1, amount_y]], dtype=np.float32
)
img = cv2.warpAffine(
img,
translation_matrix,
(w, h),
borderMode=cv2.BORDER_CONSTANT,
borderValue=fill_color,
)
return img
def as_2d_grayscale(img: np.ndarray) -> np.ndarray:
"""Given a grayscale image, this returns an image with 2 dimensions (image.ndim == 2)."""
if img.ndim == 2:
return img
if img.ndim == 3 and img.shape[2] == 1:
return img[:, :, 0]
raise AssertionError(f"Invalid image shape {img.shape}")
def as_3d(img: np.ndarray) -> np.ndarray:
"""Given a grayscale image, this returns an image with 3 dimensions (image.ndim == 3)."""
if img.ndim == 2:
return np.expand_dims(img.copy(), axis=2)
return img
def as_target_channels(
img: np.ndarray, target_c: int, narrowing: bool = False
) -> np.ndarray:
"""
Given a number of target channels (either 1, 3, or 4), this convert the given image
to an image with that many channels. If the given image already has the correct
number of channels, it will be returned as is.
Narrowing conversions are only supported if narrowing is True.
"""
c = get_h_w_c(img)[2]
if c == target_c == 1:
return as_2d_grayscale(img)
if c == target_c:
return img
if not narrowing:
assert (
c < target_c
), f"Narrowing is false, image channels ({c}) must be less than target channels ({target_c})"
if c == 1:
if target_c == 3:
return cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if target_c == 4:
return cv2.cvtColor(img, cv2.COLOR_GRAY2BGRA)
if c == 3:
if target_c == 1:
return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if target_c == 4:
return cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
if c == 4:
if target_c == 1:
return cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY)
if target_c == 3:
return cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
raise ValueError(f"Unable to convert {c} channel image to {target_c} channel image")
def create_border(
img: np.ndarray,
border_type: BorderType,
border: Padding,
color: Color | None = None,
) -> np.ndarray:
"""
Returns a new image with a specified border.
"""
if border.empty:
return img
_, _, c = get_h_w_c(img)
if c == 4 and border_type == BorderType.BLACK:
value = (0.0, 0.0, 0.0, 1.0)
else:
value = (0.0,)
cv_border_type: int = border_type.value
if border_type == BorderType.TRANSPARENT:
cv_border_type = cv2.BORDER_CONSTANT
value = (0.0,)
img = as_target_channels(img, 4)
elif border_type == BorderType.WHITE:
cv_border_type = cv2.BORDER_CONSTANT
value = (1.0,) * c
elif border_type == BorderType.CUSTOM_COLOR:
assert (
color is not None
), "Creating a border with a custom color requires supplying a custom color."
# widen image or color to make them compatible
if color.channels > c:
img = as_target_channels(img, color.channels)
elif c > color.channels:
color = Color.from_1x1_image(as_target_channels(color.to_1x1_image(), c))
cv_border_type = cv2.BORDER_CONSTANT
value = color.value
return cv2.copyMakeBorder(
img,
top=border.top,
left=border.left,
right=border.right,
bottom=border.bottom,
borderType=cv_border_type,
value=value,
)
def calculate_ssim(
img1: np.ndarray,
img2: np.ndarray,
) -> float:
"""Calculates mean localized Structural Similarity Index (SSIM)
between two images."""
C1 = 0.01**2
C2 = 0.03**2
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose()) # type: ignore
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = np.power(mu1, 2)
mu2_sq = np.power(mu2, 2)
mu1_mu2 = np.multiply(mu1, mu2)
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
)
return float(np.mean(ssim_map))
def cv_save_image(path: str, img: np.ndarray, params: List[int]):
"""
A light wrapper around `cv2.imwrite` to support non-ASCII paths.
"""
# Write image with opencv if path is ascii, since imwrite doesn't support unicode
# This saves us from having to keep the image buffer in memory, if possible
if path.isascii():
cv2.imwrite(path, img, params)
else:
dirname, _, extension = split_file_path(path)
try:
temp_filename = f'temp-{"".join(random.choices(string.ascii_letters, k=16))}.{extension}'
full_temp_path = os.path.join(dirname, temp_filename)
cv2.imwrite(full_temp_path, img, params)
os.rename(full_temp_path, path)
except:
_, buf_img = cv2.imencode(f".{extension}", img, params)
with open(path, "wb") as outf:
outf.write(buf_img) # type: ignore
def cartesian_product(arrays: List[np.ndarray]) -> np.ndarray:
"""
Returns the cartesian product of the given arrays. Good for initializing coordinates, for example.
This is cartesian_product_transpose_pp from this following SO post by Paul Panzer:
https://stackoverflow.com/questions/11144513/cartesian-product-of-x-and-y-array-points-into-single-array-of-2d-points/49445693#49445693
"""
#
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty((la, *map(len, arrays)), dtype=dtype)
idx = slice(None), *itertools.repeat(None, la)
for i, a in enumerate(arrays):
arr[i, ...] = a[idx[: la - i]]
return arr.reshape(la, -1).T
def fast_gaussian_blur(
img: np.ndarray,
sigma_x: float,
sigma_y: float | None = None,
) -> np.ndarray:
"""
Computes a channel-wise gaussian blur of the given image using a fast approximation.
The maximum error of the approximation is guaranteed to be less than 0.1%.
In addition to that, the error is guaranteed to be smoothly distributed across the image.
There are no sudden spikes in error anywhere.
Specifically, the method is implemented by downsampling the image, blurring the downsampled
image, and then upsampling the blurred image. This is much faster than blurring the full image.
Unfortunately, OpenCV's `resize` method has unfortunate artifacts when upscaling, so we
apply a small gaussian blur to the image after upscaling to smooth out the artifacts. This
single step almost doubles the runtime of the method, but it is still much faster than
blurring the full image.
"""
if sigma_y is None:
sigma_y = sigma_x
if sigma_x == 0 or sigma_y == 0:
return img.copy()
h, w, _ = get_h_w_c(img)
def get_scale_factor(sigma: float) -> float:
if sigma < 11:
return 1
if sigma < 15:
return 1.25
if sigma < 20:
return 1.5
if sigma < 25:
return 2
if sigma < 30:
return 2.5
if sigma < 50:
return 3
if sigma < 100:
return 4
if sigma < 200:
return 6
return 8
def get_sizing(size: int, sigma: float, f: float) -> Tuple[int, float, float]:
"""
Return the size of the downsampled image, the sigma of the downsampled gaussian blur,
and the sigma of the upscaled gaussian blur.
"""
if f <= 1:
# just use simple gaussian, the error is too large otherwise
return size, 0, sigma
size_down = math.ceil(size / f)
f = size / size_down
sigma_up = f
sigma_down = math.sqrt(sigma**2 - sigma_up**2) / f
return size_down, sigma_down, sigma_up
# Handling different sigma values for x and y is difficult, so we take the easy way out
# and just use the smaller one. There are potentially better ways of combining them, but
# this is good enough for now.
scale_factor = min(get_scale_factor(sigma_x), get_scale_factor(sigma_y))
h_down, y_down_sigma, y_up_sigma = get_sizing(h, sigma_y, scale_factor)
w_down, x_down_sigma, x_up_sigma = get_sizing(w, sigma_x, scale_factor)
if h != h_down or w != w_down:
# downsampled gaussian blur
img = cv2.resize(img, (w_down, h_down), interpolation=cv2.INTER_AREA)
img = cv2.GaussianBlur(
img,
(0, 0),
sigmaX=x_down_sigma,
sigmaY=y_down_sigma,
borderType=cv2.BORDER_REFLECT,
)
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_LINEAR)
if x_up_sigma != 0 or y_up_sigma != 0:
# post blur to smooth out artifacts
img = cv2.GaussianBlur(
img,
(0, 0),
sigmaX=x_up_sigma,
sigmaY=y_up_sigma,
borderType=cv2.BORDER_REFLECT,
)
return img
|