File size: 8,820 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from enum import Enum

import cv2
import numpy as np

from ..utils.utils import get_h_w_c
from .image_utils import as_target_channels, normalize, to_uint8


class BlendMode(Enum):
    NORMAL = 0
    DARKEN = 2
    MULTIPLY = 1
    COLOR_BURN = 5
    LINEAR_BURN = 22
    LIGHTEN = 3
    SCREEN = 12
    COLOR_DODGE = 6
    ADD = 4
    OVERLAY = 9
    SOFT_LIGHT = 17
    HARD_LIGHT = 18
    VIVID_LIGHT = 19
    LINEAR_LIGHT = 20
    PIN_LIGHT = 21
    REFLECT = 7
    GLOW = 8
    DIFFERENCE = 10
    EXCLUSION = 16
    NEGATION = 11
    SUBTRACT = 14
    DIVIDE = 15
    XOR = 13


__normalized = {
    BlendMode.NORMAL: True,
    BlendMode.MULTIPLY: True,
    BlendMode.DARKEN: True,
    BlendMode.LIGHTEN: True,
    BlendMode.ADD: False,
    BlendMode.COLOR_BURN: False,
    BlendMode.COLOR_DODGE: False,
    BlendMode.REFLECT: False,
    BlendMode.GLOW: False,
    BlendMode.OVERLAY: True,
    BlendMode.DIFFERENCE: True,
    BlendMode.NEGATION: True,
    BlendMode.SCREEN: True,
    BlendMode.XOR: True,
    BlendMode.SUBTRACT: False,
    BlendMode.DIVIDE: False,
    BlendMode.EXCLUSION: True,
    BlendMode.SOFT_LIGHT: True,
    BlendMode.HARD_LIGHT: True,
    BlendMode.VIVID_LIGHT: False,
    BlendMode.LINEAR_LIGHT: False,
    BlendMode.PIN_LIGHT: True,
    BlendMode.LINEAR_BURN: False,
}


def blend_mode_normalized(blend_mode: BlendMode) -> bool:
    """
    Returns whether the given blend mode is guaranteed to produce normalized results (value between 0 and 1).
    """
    return __normalized.get(blend_mode, False)


class ImageBlender:
    """Class for compositing images using different blending modes."""

    def __init__(self):
        self.modes = {
            BlendMode.NORMAL: self.__normal,
            BlendMode.MULTIPLY: self.__multiply,
            BlendMode.DARKEN: self.__darken,
            BlendMode.LIGHTEN: self.__lighten,
            BlendMode.ADD: self.__add,
            BlendMode.COLOR_BURN: self.__color_burn,
            BlendMode.COLOR_DODGE: self.__color_dodge,
            BlendMode.REFLECT: self.__reflect,
            BlendMode.GLOW: self.__glow,
            BlendMode.OVERLAY: self.__overlay,
            BlendMode.DIFFERENCE: self.__difference,
            BlendMode.NEGATION: self.__negation,
            BlendMode.SCREEN: self.__screen,
            BlendMode.XOR: self.__xor,
            BlendMode.SUBTRACT: self.__subtract,
            BlendMode.DIVIDE: self.__divide,
            BlendMode.EXCLUSION: self.__exclusion,
            BlendMode.SOFT_LIGHT: self.__soft_light,
            BlendMode.HARD_LIGHT: self.__hard_light,
            BlendMode.VIVID_LIGHT: self.__vivid_light,
            BlendMode.LINEAR_LIGHT: self.__linear_light,
            BlendMode.PIN_LIGHT: self.__pin_light,
            BlendMode.LINEAR_BURN: self.__linear_burn,
        }

    def apply_blend(
        self, a: np.ndarray, b: np.ndarray, blend_mode: BlendMode
    ) -> np.ndarray:
        return self.modes[blend_mode](a, b)

    def __normal(self, a: np.ndarray, _: np.ndarray) -> np.ndarray:
        return a

    def __multiply(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return a * b

    def __darken(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.minimum(a, b)

    def __lighten(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.maximum(a, b)

    def __add(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return a + b

    def __color_burn(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(
            a == 0, 0, np.maximum(0, (1 - ((1 - b) / np.maximum(0.0001, a))))
        )

    def __color_dodge(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(a == 1, 1, np.minimum(1, b / np.maximum(0.0001, (1 - a))))

    def __reflect(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(a == 1, 1, np.minimum(1, b * b / np.maximum(0.0001, 1 - a)))

    def __glow(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(b == 1, 1, np.minimum(1, a * a / np.maximum(0.0001, 1 - b)))

    def __overlay(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(b < 0.5, 2 * b * a, 1 - 2 * (1 - b) * (1 - a))

    def __difference(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.asarray(cv2.absdiff(a, b))

    def __negation(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return 1 - cv2.absdiff(1 - b, a)  # type: ignore

    def __screen(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return a + b - (a * b)  # type: ignore

    def __xor(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return normalize(
            np.bitwise_xor(to_uint8(a, normalized=True), to_uint8(b, normalized=True))
        )

    def __subtract(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return b - a

    def __divide(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return b / np.maximum(0.0001, a)

    def __exclusion(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return a * (1 - b) + b * (1 - a)

    def __soft_light(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        l = 2 * b * a + np.square(b) * (1 - 2 * a)
        h = np.sqrt(b) * (2 * a - 1) + 2 * b * (1 - a)
        return np.where(a <= 0.5, l, h)

    def __hard_light(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(a <= 0.5, 2 * a * b, 1 - 2 * (1 - a) * (1 - b))

    def __vivid_light(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return np.where(a <= 0.5, self.__color_burn(a, b), self.__color_dodge(a, b))

    def __linear_light(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return b + 2 * a - 1

    def __pin_light(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        x = 2 * a
        y = x - 1
        return np.where(b < y, y, np.where(b > x, x, b))

    def __linear_burn(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
        return a + b - 1


def blend_images(overlay: np.ndarray, base: np.ndarray, blend_mode: BlendMode):
    """
    Changes the given image to the background overlayed with the image.

    The 2 given images must be the same size and their values must be between 0 and 1.

    The returned image is guaranteed to have values between 0 and 1.

    If the 2 given images have a different number of channels, then the returned image
    will have maximum of the two.

    Only grayscale, RGB, and RGBA images are supported.
    """
    o_shape = get_h_w_c(overlay)
    b_shape = get_h_w_c(base)

    assert (
        o_shape[:2] == b_shape[:2]
    ), "The overlay and the base image must have the same size"

    def assert_sane(c: int, name: str):
        sane = c in (1, 3, 4)
        assert sane, f"The {name} has to be a grayscale, RGB, or RGBA image"

    o_channels = o_shape[2]
    b_channels = b_shape[2]

    assert_sane(o_channels, "overlay layer")
    assert_sane(b_channels, "base layer")

    blender = ImageBlender()
    target_c = max(o_channels, b_channels)
    needs_clipping = not blend_mode_normalized(blend_mode)

    if target_c == 4 and b_channels < 4:
        base = as_target_channels(base, 3)

        # The general algorithm below can be optimized because we know that b_a is 1
        o_a = np.dstack((overlay[:, :, 3],) * 3)
        o_rgb = overlay[:, :, :3]

        blend_rgb = blender.apply_blend(o_rgb, base, blend_mode)
        final_rgb = o_a * blend_rgb + (1 - o_a) * base  # type: ignore
        if needs_clipping:
            final_rgb = np.clip(final_rgb, 0, 1)

        return as_target_channels(final_rgb, 4)

    overlay = as_target_channels(overlay, target_c)
    base = as_target_channels(base, target_c)

    if target_c in (1, 3):
        # We don't need to do any alpha blending, so the images can blended directly
        result = blender.apply_blend(overlay, base, blend_mode)
        if needs_clipping:
            result = np.clip(result, 0, 1)
        return result

    # do the alpha blending for RGBA
    o_a = overlay[:, :, 3]
    b_a = base[:, :, 3]
    o_rgb = overlay[:, :, :3]
    b_rgb = base[:, :, :3]

    final_a = 1 - (1 - o_a) * (1 - b_a)

    blend_strength = o_a * b_a
    o_strength = o_a - blend_strength  # type: ignore
    b_strength = b_a - blend_strength  # type: ignore

    blend_rgb = blender.apply_blend(o_rgb, b_rgb, blend_mode)

    final_rgb = (
        (np.dstack((o_strength,) * 3) * o_rgb)
        + (np.dstack((b_strength,) * 3) * b_rgb)
        + (np.dstack((blend_strength,) * 3) * blend_rgb)
    )
    final_rgb /= np.maximum(np.dstack((final_a,) * 3), 0.0001)  # type: ignore
    final_rgb = np.clip(final_rgb, 0, 1)

    result = np.concatenate([final_rgb, np.expand_dims(final_a, axis=2)], axis=2)
    if needs_clipping:
        result = np.clip(result, 0, 1)
    return result