File size: 23,016 Bytes
7786bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022d51
7786bd6
 
 
 
 
 
3022d51
7786bd6
 
 
 
 
 
3022d51
7786bd6
 
 
 
3022d51
7786bd6
3022d51
 
 
 
 
 
 
 
 
 
7786bd6
 
 
 
 
 
 
 
 
3022d51
 
7786bd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022d51
7786bd6
 
3022d51
 
7786bd6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
################################################## PACKAGES ############################################################
################################################# PACKAGES #############################################################
# PyTorch for deep learning operations
import torch
import torch.nn as nn

# PyTorch data loading and utilities
import torch.multiprocessing

# Additional PyTorch modules and libraries
import cv2  # OpenCV for image processing

# Transfer Learning model library
import timm

# Data manipulation and handling
import requests

# COCO dataset tools
from pycocotools.coco import COCO
import numpy as np

# Hugging Face Transformers library for BERT models
from transformers import BertModel, BertTokenizer, DistilBertModel, DistilBertConfig, DistilBertTokenizer
import torch.nn.functional as F

# Image processing and augmentations
import albumentations as A

# Visualization and progress tracking
from tqdm import tqdm
import matplotlib.pyplot as plt

# Additional utility for iterating over combinations
import itertools
from albumentations.pytorch import ToTensorV2
import pandas as pd
from configs import CFG

from huggingface_hub import PyTorchModelHubMixin


################################################### MODELS ############################################################
################################################# MODELS ##############################################################

class ProjectionHead(nn.Module):
    def __init__(self, input_dim, projection_dim=CFG.projection_dim, dropout_rate=CFG.dropout_rate, *args, **kwargs):
        """
        Projection Head module for contrastive learning.

        :param input_dim: Dimensionality of input features.
        :param projection_dim: Dimensionality of projected features (default: CFG.projection_dim).
        :param dropout_rate: Dropout rate (default: CFG.dropout_rate).
        """
        super(ProjectionHead, self).__init__(*args, **kwargs)

        # Attributes
        self.input_dim = input_dim
        self.projection_dim = projection_dim
        self.dropout_rate = dropout_rate
        # Layers
        self.linear_layer1 = nn.Linear(self.input_dim, self.projection_dim)
        self.gelu = nn.GELU()
        self.linear_layer2 = nn.Linear(self.projection_dim, self.projection_dim)
        self.dropout = nn.Dropout(self.dropout_rate)
        self.normalization_layer = nn.LayerNorm(self.projection_dim)

    def forward(self, inputs):
        """
        Forward pass of the projection head.

        :param inputs: Input features.
        :return: Projected features.
        """
        x = inputs
        x = self.linear_layer1(x)
        x = self.gelu(x)
        x = self.linear_layer2(x)
        x = self.dropout(x)
        x = self.normalization_layer(x)

        return x

    def __call__(self, inputs):
        """
        Callable method for the projection head.

        :param inputs: Input features.
        :return: Projected features.
        """
        return self.forward(inputs)


class ImageEncoder(nn.Module):
    def __init__(self, model_name=CFG.vit_name, projection_dim=CFG.projection_dim, trainable=False,
                 dropout_rate=CFG.dropout_rate, *args, **kwargs):
        """
        Image encoder module using Vision Transformer (ViT) backbone.

        :param model_name: Name of the Vision Transformer model (default: CFG.vit_name).
        :param projection_dim: Dimensionality of projected features (default: CFG.projection_dim).
        :param trainable: Whether to make the backbone trainable (default: False).
        :param dropout_rate: Dropout rate (default: CFG.dropout_rate).
        """
        super(ImageEncoder, self).__init__(*args, **kwargs)
        # Attributes
        self.model_name = model_name
        self.projection_dim = projection_dim
        self.trainable = trainable
        self.dropout_rate = dropout_rate
        # Models
        self.pretrained_vit = timm.create_model(self.model_name, pretrained=True, num_classes=0)
        self.projection_head = ProjectionHead(self.pretrained_vit.embed_dim, self.projection_dim, self.dropout_rate)
        # Freeze pretrained ViT layers
        for parameter in self.pretrained_vit.parameters():
            parameter.requires_grad = self.trainable

    def forward(self, images):
        """
        Forward pass of the image encoder.

        :param images: Input images.
        :return: Projected features.
        """
        x = images
        # forward_features: to return sequences (encoder) -> torch.Size([batch_size, 197, 768]) forward_head: to
        # return flattened sequences (vectors) -> torch.Size([batch_size, 768]) if num_classes=0 (no classification)
        # in timm.create_model and torch.Size([batch_size, 1000]) otherwise (classification)
        x = self.pretrained_vit.forward_features(x)
        # output: torch.Size([batch_size, 197, 256])
        x = self.projection_head(x)

        return x

    def __call__(self, images):
        """
        Callable method for the image encoder.

        :param images: Input images.
        :return: Projected features.
        """
        return self.forward(images)


class TextEncoder(nn.Module):
    def __init__(self, model_name=CFG.bert_name, projection_dim=CFG.projection_dim,
                 trainable=False, dropout_rate=CFG.dropout_rate, *args, **kwargs):
        """
        Text encoder module using BERT backbone.

        :param model_name: Name of the BERT model (default: CFG.bert_name).
        :param projection_dim: Dimensionality of projected features (default: CFG.projection_dim).
        :param trainable: Whether to make the backbone trainable (default: False).
        :param dropout_rate: Dropout rate (default: CFG.dropout_rate).
        """
        super(TextEncoder, self).__init__(*args, **kwargs)
        # Attributes
        self.model_name = model_name
        self.projection_dim = projection_dim
        self.dropout_rate = dropout_rate
        self.trainable = trainable
        # Models
        self.pretrained_bert = BertModel.from_pretrained(self.model_name)
        self.projection_head = ProjectionHead(self.pretrained_bert.config.hidden_size,
                                              self.projection_dim, self.dropout_rate)
        # Freeze BERT
        for parameter in self.pretrained_bert.parameters():
            parameter.requires_grad = self.trainable

    def forward(self, captions):
        """
        Forward pass of the text encoder.

        :param captions: Input captions (input_ids, attention_mask).
        :return: Projected features.
        """
        input_ids, attention_mask = captions
        # last_hidden_state: torch.Size([batch_size, sequence, 768])
        # pooler_output: torch.Size([batch_size, 768])
        x = self.pretrained_bert(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        # output: torch.Size([batch_size, sequence, 256])
        x = self.projection_head(x)

        return x

    def __call__(self, captions):
        """
        Callable method for the text encoder.

        :param captions: Input captions (input_ids, attention_mask).
        :return: Projected features.
        """
        return self.forward(captions)


class ModalityTokenEncoder(nn.Module):
    def __init__(self, projection_dim=CFG.projection_dim, token_size=CFG.token_size, device='cpu', token_dim=CFG.token_dim, *args, **kwargs):
        """
        Modality token encoder module for encoding modality token information.

        :param projection_dim: Dimensionality of projected features (default: CFG.projection_dim).
        :param token_size: Token size.
        :param device: Device to run the module on (default: 'cpu').
        :param token_dim: Dimension of tokens
        """
        super(ModalityTokenEncoder, self).__init__(*args, **kwargs)
        # Attributes
        self.projection_dim = projection_dim
        self.device = device
        self.token_size = token_size
        self.token_dim = token_dim
        # Models
        text_variance = torch.rand(1) * 0.5 + 0.1
        image_variance = torch.rand(1) * 0.5 + 0.1
        self.text_token = nn.Parameter(torch.normal(mean=0, std=text_variance.item(),
                                                      size=(self.token_size, self.token_dim)).to(self.device))
        self.image_token = nn.Parameter(torch.normal(mean=0, std=image_variance.item(),
                                                       size=(self.token_size, self.token_dim)).to(self.device))
        # Projection
        self.token_projection = nn.Sequential(
            nn.Linear(self.token_dim, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Linear(128, self.projection_dim),
            nn.LayerNorm(self.projection_dim)
        )

    def forward(self, modality_type):
        """
        Forward pass of the modality encoder.

        :param modality_type: Input token indicator.
        :return: Projected features.
        """
        token = torch.where(torch.tensor(modality_type == "image"), self.image_token, self.text_token)
        token_features = self.token_projection(token)
        return token_features

    def __call__(self, modality_type):
        """
        Callable method for the token encoder.

        :param modality_type: Input token indicator.
        :return: Projected features.
        """
        return self.forward(modality_type)

class UniversalProjectionOutput:
    def __init__(self, outputs):
        """
        Wrapper class for projection model outputs.

        :param outputs: Dictionary containing model outputs.
        """
        self.outputs = outputs

    def __getattr__(self, name):
        """
        Retrieve attribute from outputs dictionary.

        :param name: Name of the attribute to retrieve.
        :return: Value of the attribute.
        """
        if name in self.outputs:
            return self.outputs[name]
        else:
            raise AttributeError(f"'UniversalProjectionOutput' object has no attribute '{name}'")


class UniversalProjectionEncoder(nn.Module):
    def __init__(self, input_dim=CFG.projection_dim, num_head=CFG.num_head, num_layers=CFG.num_layers, *args, **kwargs):
        """
         Initialize Universal Projection module.

            :param input_dim: Dimensionality of the input embeddings. Defaults to CFG.projection_dim.
            :param num_head: Number of attention heads. Defaults to CFG.num_head.
            :param num_layers: Number of transformer layers. Defaults to CFG.num_layers.
        """
        super(UniversalProjectionEncoder, self).__init__(*args, **kwargs)
        self.input_dim = input_dim
        self.num_head = num_head
        self.num_layers = num_layers

        self.transformer_encoder_block = nn.TransformerEncoderLayer(
            d_model=self.input_dim,
            nhead=self.num_head,
            batch_first=True
        )
        self.transformer_encoder = nn.TransformerEncoder(
            self.transformer_encoder_block,
            num_layers=self.num_layers
        )

        # self.transformer_encoder = TransformerModel(self.input_dim, self.num_head, self.num_layers)

        # model_name = 'bert-large-uncased'
        self.layer_normalization = nn.LayerNorm(self.input_dim)
        # self.transfopip install torch torchvision -Urmer_encoder = BertModel.from_pretrained(model_name)

    def forward(self, inputs):
        # x: image or caption embeddings
        x, tokens = inputs

        ## Universal Projection block
        tokens = tokens.unsqueeze(0).expand(x.size()[0], -1, -1)

        # Concatenate tokens with image/caption embeddings
        # output_tensor = torch.cat((tokens, x), dim=1)
        output_tensor = x + tokens

        # Normalization
        output_norm = self.layer_normalization(output_tensor)

        # Projection
        output_encoder = self.transformer_encoder(output_norm)

        ## Residual Connection
        residual_output = output_encoder + output_tensor
        # output = output_encoder[:, CFG.token_size:, :]

        # Residual connection
        return UniversalProjectionOutput({'last_hidden_state': residual_output,
                                          'mean_output': torch.mean(residual_output, dim=1),
                                          'pooler_output': residual_output[:, 0, :]})

    def __call__(self, inputs):
        return self.forward(inputs)


class OneEncoder(nn.Module, PyTorchModelHubMixin):

    def __init__(self, image_encoder=ImageEncoder(), text_encoder=TextEncoder(),
                 modality_token_encoder=ModalityTokenEncoder(),
                 universal_projection_encoder=UniversalProjectionEncoder(), device='cpu',
                 tokenizer=BertTokenizer.from_pretrained(CFG.bert_name),
                 image_preprocessor=A.Compose([A.Resize(CFG.image_size, CFG.image_size, always_apply=True),
                                               A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225),
                                                           always_apply=True), ToTensorV2()]),
                 *args, **kwargs):
        """
        Initialize the model.

        :param image_encoder: Image encoder module (default: ImageEncoder()).
        :param text_encoder: Text encoder module (default: TextEncoder()).
        :param modality_token_encoder: Modality encoder module (default: ModalityEncoder()).
        :param universal_projection_encoder: Universal projection encoder module (default: UniversalProjection()).
        :param device: Device to run the model on (default: 'cpu').
        :param tokenizer: Tokenizer for text encoding (default: BertTokenizer.from_pretrained(CFG.bert_name)).
        :param image_preprocessor: Preprocessor for image inputs (default: A.Compose([...])).
        """

        super(OneEncoder, self).__init__(*args, **kwargs)
        self.device = device
        self.image_encoder = image_encoder
        self.text_encoder = text_encoder
        self.universal_projection_encoder = universal_projection_encoder
        self.modality_token_encoder = modality_token_encoder
        self.modality_token_encoder.device = self.device
        self.tokenizer = tokenizer
        self.image_preprocessor = image_preprocessor
        # The learnable temperature parameter τ was initialized to the equivalent of 0.07 from (Wu et al., 2018)
        # and clipped to prevent scaling the logits by more than 100, which we found necessary
        # to prevent training instability.
        self.temperature = nn.Parameter(torch.tensor(0.07).to(self.device))

    @classmethod
    def load_image(cls, image_path):
        # Load online image
        if image_path.startswith("http"):
            response = requests.get(image_path)
            # Check if the request was successful
            if response.status_code == 200:
                # Convert the image content to a numpy array
                img_array = np.asarray(bytearray(response.content), dtype=np.uint8)

                # Decode the image using OpenCV
                image = cv2.imdecode(img_array, cv2.IMREAD_COLOR)

                # Convert BGR to RGB
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # Load local image
        else:
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        return image

    def encode_image(self, image_paths=None, image_tensors=None, outputs="mean"):
        """
        Encode images into feature vectors.

        :param image_paths: List of image paths.
        :param image_tensors: Torch tensor (batch, 3, 224, 224).
        :param outputs type of outputs: mean, pooler, sequence
        :return: Encoded image features.
        """
        if image_paths is not None:
            image_processed = [self.image_preprocessor(image=self.load_image(image))["image"] for image in image_paths]
            image_processed = torch.stack(image_processed).to(self.device)
            with torch.no_grad():
                image_features = self.image_encoder(image_processed.to(self.device))
                modality_token_feature = self.modality_token_encoder("image")
                output_features = self.universal_projection_encoder([image_features, modality_token_feature])

        elif image_tensors is not None:
            with torch.no_grad():
                image_features = self.image_encoder(image_tensors.to(self.device))
                modality_token_feature = self.modality_token_encoder("image")
                output_features = self.universal_projection_encoder([image_features, modality_token_feature])
        if outputs == "mean":
            image_features = output_features.mean_output
        elif outputs == "sequence":
            image_features = output_features.last_hidden_state
        else:
            image_features = output_features.pooler_output

        return image_features

    def encode_text(self, texts, max_length=128, outputs="mean"):
        """
        Encode text descriptions into feature vectors.

        :param texts: List of text descriptions.
        :param max_length: Maximum length of the text sequences (default: 128).
        :param outputs type of outputs: mean, sequence, pooler
        :return: Encoded text features.
        """
        encoded_query = self.tokenizer(
            texts, padding=True, truncation=True, max_length=max_length
        )
        batch = {
            key: torch.tensor(values).to(self.device)
            for key, values in encoded_query.items()
        }
        with torch.no_grad():
            text_features = self.text_encoder([
                batch["input_ids"], batch["attention_mask"]
            ])
            modality_token_feature = self.modality_token_encoder("text")
            output_features = self.universal_projection_encoder([text_features, modality_token_feature])
            if outputs == "mean":
                text_features = output_features.mean_output
            elif outputs == "sequence":
                text_features = output_features.last_hidden_state
            else:
                text_features = output_features.pooler_output

        return text_features

    def matching(self, image_paths, texts, normalize=True, top_k=None, strategy="similarity", temperature=0.0):
        """
        Calculate similarities between images and texts.

        :param image_paths: List of paths to images.
        :param texts: List of text descriptions.
        :param normalize: Whether to normalize the features (default: True).
        :param top_k: Return top K results (default: None).
        :param strategy: Matching strategy, either 'similarity' or 'softmax' (default: 'similarity').
        :param temperature: change real distribution, default = 2.5
        :return: If top_k is provided, returns top probabilities and labels, otherwise returns dot similarities.
        """

        image_features = self.encode_image(image_paths=image_paths)
        text_features = self.encode_text(texts=texts)

        if normalize:
            image_features = F.normalize(image_features, p=2, dim=-1)
            text_features = F.normalize(text_features, p=2, dim=-1)
        dot_similarities = (image_features @ text_features.T) * torch.exp(torch.tensor(temperature).to(self.device))
        if strategy == 'softmax':
            dot_similarities = (float(len(set(texts))) * dot_similarities).softmax(dim=-1)
        if top_k is not None:
            top_probs, top_labels = dot_similarities.cpu().topk(top_k, dim=-1)
            return top_probs, top_labels
        else:
            return dot_similarities, None

    def image_retrieval(self, query, image_paths, image_embeddings=None, temperature=0.0, n=9, plot=False):
        """
        Perform image retrieval based on a text query.

        :param query: Text query (string).
        :param image_paths: List of image paths (optional).
        :param image_embeddings: Precomputed image embeddings (optional).
        :param temperature: change real distribution, default = 2.5
        :param n: Number of images to retrieve (default: 9).
        :param plot: Whether to plot the retrieved images (default: False).
        :return: Tuple containing similarity values and indices of the retrieved images.
        """
        text_embeddings = self.encode_text([query])
        if image_embeddings is None:
            image_embeddings = self.encode_image(image_paths=image_paths)

        image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
        text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
        dot_similarity = (text_embeddings_n @ image_embeddings_n.T) * torch.exp(
            torch.tensor(temperature).to(self.device))
        if n > len(image_paths):
            n = len(image_paths)
        values, indices = torch.topk(dot_similarity.cpu().squeeze(0), n)
        if plot:
            nrows = int(np.sqrt(n))
            ncols = int(np.ceil(n / nrows))
            matches = [image_paths[idx] for idx in indices]
            fig, axes = plt.subplots(nrows, ncols, figsize=(20, 20))
            for match, ax in zip(matches, axes.flatten()):
                image = self.load_image(f"{match}")
                ax.imshow(image)
                ax.axis("off")
            plt.savefig("img.png")
            #fig.suptitle(query)
            #plt.show()
        #return values, indices
       

    def text_retrieval(self, query, texts, text_embeddings=None, n=9, plot_image=False, temperature=0.0):
        """
        Perform text retrieval based on an image query.

        :param query: Image query (path of image).
        :param texts: List of text samples.
        :param text_embeddings: Precomputed text embeddings (optional).
        :param n: Number of texts to retrieve (default: 9).
        :param plot_image: Plot the query
        :param temperature: change real distribution, default = 2.5
        :return: List of retrieved text samples and its probabilities.
        """
        if text_embeddings is None:
            text_embeddings = self.encode_text(texts)

        image_embeddings = self.encode_image([query])
        image_embeddings_n = F.normalize(image_embeddings, p=2, dim=-1)
        text_embeddings_n = F.normalize(text_embeddings, p=2, dim=-1)
        dot_similarity = (image_embeddings_n @ text_embeddings_n.T) * torch.exp(
            torch.tensor(temperature).to(self.device))

        if n > len(texts):
            n = len(texts)

        values, indices = torch.topk(dot_similarity.cpu().squeeze(0), n)
        matches = [texts[idx] for idx in indices]
        if plot_image:
            # Read and plot the image
            image = self.load_image(query)
            # Plot the image
            plt.imshow(image)
            #plt.title('Random Image')
            plt.axis('off')
            plt.savefig("img.png")
            #plt.show()
        #return matches, values