Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,9 +31,10 @@ if uploaded_file:
|
|
31 |
df = pd.read_csv(uploaded_file)
|
32 |
st.success("β
File uploaded and loaded!")
|
33 |
|
34 |
-
#
|
35 |
st.subheader("π Data Preview")
|
36 |
-
st.
|
|
|
37 |
|
38 |
# Descriptive Stats
|
39 |
st.subheader("π Descriptive Statistics")
|
@@ -46,6 +47,46 @@ if uploaded_file:
|
|
46 |
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", ax=ax)
|
47 |
st.pyplot(fig)
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Anomaly Detection
|
50 |
st.subheader("β οΈ Anomaly Detection using Isolation Forest")
|
51 |
num_df = df.select_dtypes(include='number').dropna()
|
|
|
31 |
df = pd.read_csv(uploaded_file)
|
32 |
st.success("β
File uploaded and loaded!")
|
33 |
|
34 |
+
# Custom column selection for preview
|
35 |
st.subheader("π Data Preview")
|
36 |
+
selected_columns = st.multiselect("Select columns to preview", df.columns.tolist(), default=df.columns.tolist()[:5])
|
37 |
+
st.dataframe(df[selected_columns].head())
|
38 |
|
39 |
# Descriptive Stats
|
40 |
st.subheader("π Descriptive Statistics")
|
|
|
47 |
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", ax=ax)
|
48 |
st.pyplot(fig)
|
49 |
|
50 |
+
# Technical Visualizations
|
51 |
+
st.subheader("π Technical Graphs")
|
52 |
+
numeric_columns = df.select_dtypes(include='number').columns.tolist()
|
53 |
+
|
54 |
+
# Time Series Plot
|
55 |
+
selected_graph_column = st.selectbox("Select a parameter for time series plot", numeric_columns)
|
56 |
+
time_column = st.selectbox("Select time/index column (optional)", ['Index'] + df.columns.tolist(), index=0)
|
57 |
+
|
58 |
+
fig2, ax2 = plt.subplots(figsize=(10, 4))
|
59 |
+
if time_column != 'Index':
|
60 |
+
try:
|
61 |
+
df[time_column] = pd.to_datetime(df[time_column])
|
62 |
+
df_sorted = df.sort_values(by=time_column)
|
63 |
+
ax2.plot(df_sorted[time_column], df_sorted[selected_graph_column])
|
64 |
+
ax2.set_xlabel(time_column)
|
65 |
+
except:
|
66 |
+
ax2.plot(df[selected_graph_column])
|
67 |
+
ax2.set_xlabel("Index")
|
68 |
+
else:
|
69 |
+
ax2.plot(df[selected_graph_column])
|
70 |
+
ax2.set_xlabel("Index")
|
71 |
+
ax2.set_title(f"Trend Over Time: {selected_graph_column}")
|
72 |
+
ax2.set_ylabel(selected_graph_column)
|
73 |
+
st.pyplot(fig2)
|
74 |
+
|
75 |
+
# Pairplot
|
76 |
+
if len(numeric_columns) > 1:
|
77 |
+
st.subheader("π Pairwise Parameter Relationships")
|
78 |
+
sampled_df = df[numeric_columns].sample(n=200, random_state=1) if len(df) > 200 else df[numeric_columns]
|
79 |
+
pair_fig = sns.pairplot(sampled_df)
|
80 |
+
st.pyplot(pair_fig)
|
81 |
+
|
82 |
+
# Boxplots
|
83 |
+
st.subheader("π Distribution & Outliers per Parameter")
|
84 |
+
selected_box_column = st.selectbox("Select parameter for boxplot", numeric_columns)
|
85 |
+
fig3, ax3 = plt.subplots()
|
86 |
+
sns.boxplot(y=df[selected_box_column], ax=ax3)
|
87 |
+
ax3.set_title(f"Boxplot: {selected_box_column}")
|
88 |
+
st.pyplot(fig3)
|
89 |
+
|
90 |
# Anomaly Detection
|
91 |
st.subheader("β οΈ Anomaly Detection using Isolation Forest")
|
92 |
num_df = df.select_dtypes(include='number').dropna()
|