Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - FactoryRAG: Q&A over Sensor Logs (Streamlit + Hugging Face)
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Set page config
|
10 |
+
st.set_page_config(page_title="FactoryRAG - Sensor Logs", layout="wide")
|
11 |
+
st.title("π FactoryRAG: Human-Centric AI for Sensor Log Analysis")
|
12 |
+
|
13 |
+
# Load models
|
14 |
+
EMBED_MODEL = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
15 |
+
GEN_MODEL = pipeline('text2text-generation', model='google/flan-t5-base')
|
16 |
+
|
17 |
+
# Load CSV sensor log file
|
18 |
+
@st.cache_data
|
19 |
+
def load_logs():
|
20 |
+
df = pd.read_csv("01-04T184148_000_mode1.csv")
|
21 |
+
return df
|
22 |
+
|
23 |
+
# Convert log rows to natural language chunks
|
24 |
+
def convert_to_chunks(df):
|
25 |
+
chunks = []
|
26 |
+
for idx, row in df.iterrows():
|
27 |
+
sentence = f"Log entry {idx}: " + ", ".join([f"{col}: {row[col]:.2f}" for col in df.columns])
|
28 |
+
chunks.append(sentence)
|
29 |
+
return chunks
|
30 |
+
|
31 |
+
# Load and embed logs
|
32 |
+
df = load_logs()
|
33 |
+
st.write("π Sensor Data Snapshot:", df.head())
|
34 |
+
|
35 |
+
if 'chunks' not in st.session_state:
|
36 |
+
st.session_state.chunks = convert_to_chunks(df)
|
37 |
+
st.session_state.embeddings = EMBED_MODEL.encode(st.session_state.chunks)
|
38 |
+
|
39 |
+
# Ask a question
|
40 |
+
query = st.text_input("π Ask something about the sensor logs:")
|
41 |
+
|
42 |
+
if query:
|
43 |
+
query_vec = EMBED_MODEL.encode([query])[0]
|
44 |
+
scores = np.dot(st.session_state.embeddings, query_vec)
|
45 |
+
top_idxs = np.argsort(scores)[-3:][::-1]
|
46 |
+
context = "\n".join([st.session_state.chunks[i] for i in top_idxs])
|
47 |
+
|
48 |
+
prompt = f"Answer based on the following logs:\n{context}\n\nQuestion: {query}"
|
49 |
+
response = GEN_MODEL(prompt, max_length=256)[0]['generated_text']
|
50 |
+
|
51 |
+
st.subheader("π€ FactoryGPT Answer")
|
52 |
+
st.write(response)
|
53 |
+
|
54 |
+
st.markdown("### π§βπ Human Feedback")
|
55 |
+
st.radio("Is this answer acceptable?", ["Approve", "Correct", "Escalate"], horizontal=True)
|
56 |
+
|
57 |
+
with st.expander("π Retrieved Log Context"):
|
58 |
+
st.code(context)
|
59 |
+
|
60 |
+
elif len(df) == 0:
|
61 |
+
st.warning("β οΈ No data loaded. Please check your CSV file.")
|