|
from huggingface_hub import InferenceClient
|
|
from init import ACCESS_TOKEN, SYSTEM_PROMPT
|
|
from utils import extract_sql, is_sql
|
|
from database import execute
|
|
|
|
client = InferenceClient(api_key=ACCESS_TOKEN)
|
|
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
for val in history:
|
|
if val[0]:
|
|
messages.append({"role": "user", "content": val[0]})
|
|
if val[1]:
|
|
messages.append({"role": "assistant", "content": val[1]})
|
|
|
|
messages.append({"role": "user", "content": message})
|
|
|
|
response = ""
|
|
for message in client.chat.completions.create(
|
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|
max_tokens=max_tokens,
|
|
stream=True,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
messages=messages,
|
|
):
|
|
token = message.choices[0].delta.content
|
|
response += token
|
|
yield response
|
|
if is_sql(response):
|
|
sql_query = extract_sql(response)
|
|
sql_result = execute(sql_query)
|
|
|
|
reformulation_prompt = f"Kết quả truy vấn SQL:\n{sql_result}\n\nHãy diễn đạt lại kết quả cho người dùng một cách dễ hiểu."
|
|
messages.append({"role": "user", "content": reformulation_prompt})
|
|
|
|
reformulated_response = ""
|
|
for msg in client.chat.completions.create(
|
|
model="Qwen/Qwen2.5-3B-Instruct",
|
|
max_tokens=512,
|
|
stream=True,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
messages=messages,
|
|
):
|
|
token = msg.choices[0].delta.content
|
|
reformulated_response += token
|
|
yield reformulated_response
|
|
|