File size: 44,181 Bytes
2b30c39 a8377f8 2b30c39 cba1c8b 2fc31e9 cba1c8b 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 cba1c8b 2b30c39 3b944a1 2b30c39 3b944a1 cba1c8b 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 9755f3f 2b30c39 3b944a1 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 3b944a1 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 3b944a1 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 9755f3f cba1c8b 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 a8377f8 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 defde46 2b30c39 defde46 3b944a1 defde46 3b944a1 defde46 3b944a1 defde46 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 a8377f8 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 a8377f8 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 a8377f8 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 2b30c39 3b944a1 a8377f8 3b944a1 a8377f8 2b30c39 a8377f8 2b30c39 3b944a1 a8377f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
# 创建一个全局变量来跟踪已下载的资源
# Create a global variable to track downloaded resources
downloaded_resources = {
"configs": False,
"tokenizer_vq32": False,
"tokenizer_vq8192": False,
"ar_Vq32ToVq8192": False,
"ar_PhoneToVq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
"""Detect and install espeak-ng dependency"""
try:
# Check if espeak-ng is already installed
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Detected espeak-ng not installed in the system, attempting to install...")
# Try to install espeak-ng and its data using apt-get
subprocess.run(["apt-get", "update"], check=True)
# Install espeak-ng and the corresponding language data package
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
print("espeak-ng and its data packages installed successfully!")
else:
print("espeak-ng is already installed in the system.")
# Even if already installed, try to update data to ensure integrity (optional but sometimes helpful)
# print("Attempting to update espeak-ng data...")
# subprocess.run(["apt-get", "update"], check=True)
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
# Verify Chinese support (optional)
try:
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
if "cmn" in voices_result.stdout:
print("espeak-ng supports 'cmn' language.")
else:
print("Warning: espeak-ng is installed, but 'cmn' language still seems unavailable.")
except Exception as e:
print(f"Error verifying espeak-ng Chinese support (may not affect functionality): {e}")
except Exception as e:
print(f"Error installing espeak-ng: {e}")
print("Please try to run manually: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
# Install espeak before all other operations
install_espeak()
def patch_langsegment_init():
try:
# Try to find the location of the LangSegment package
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None:
print("Unable to locate LangSegment package.")
return
# Build the path to __init__.py
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
if not os.path.exists(init_path):
print(f"LangSegment __init__.py file not found at: {init_path}")
# Try to find in site-packages, applicable in some environments
for site_pkg_path in site.getsitepackages():
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
if os.path.exists(potential_path):
init_path = potential_path
print(f"Found __init__.py in site-packages: {init_path}")
break
else: # If the loop ends normally (no break)
print(f"Also unable to find __init__.py in site-packages")
return
print(f"Attempting to read LangSegment __init__.py: {init_path}")
with open(init_path, 'r') as f:
lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith(target_line_prefix):
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
print(f"Found line that needs modification: {stripped_line}")
# Remove setLangfilters and getLangfilters
modified_line = stripped_line.replace(',setLangfilters', '')
modified_line = modified_line.replace(',getLangfilters', '')
# Ensure comma handling is correct (e.g., if they are the last items)
modified_line = modified_line.replace('setLangfilters,', '')
modified_line = modified_line.replace('getLangfilters,', '')
# If they are the only extra imports, remove any redundant commas
modified_line = modified_line.rstrip(',')
new_lines.append(modified_line + '\n')
modified = True
print(f"Modified line: {modified_line.strip()}")
else:
new_lines.append(line) # Line is fine, keep as is
else:
new_lines.append(line) # Non-target line, keep as is
if modified:
print(f"Attempting to write back modified LangSegment __init__.py to: {init_path}")
try:
with open(init_path, 'w') as f:
f.writelines(new_lines)
print("LangSegment __init__.py modified successfully.")
# Try to reload the module to make changes effective (may not work, depending on import chain)
try:
import LangSegment
importlib.reload(LangSegment)
print("LangSegment module has been attempted to reload.")
except Exception as reload_e:
print(f"Error reloading LangSegment (may have no impact): {reload_e}")
except PermissionError:
print(f"Error: Insufficient permissions to modify {init_path}. Consider modifying requirements.txt.")
except Exception as write_e:
print(f"Other error occurred when writing LangSegment __init__.py: {write_e}")
else:
print("LangSegment __init__.py doesn't need modification.")
except ImportError:
print("LangSegment package not found, unable to fix.")
except Exception as e:
print(f"Unexpected error occurred when fixing LangSegment package: {e}")
# Execute the fix before all other imports (especially Amphion) that might trigger LangSegment
patch_langsegment_init()
# Clone Amphion repository
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
# Add Amphion to the path
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
# Ensure needed directories exist
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
# Download and setup config files
def setup_configs():
if downloaded_resources["configs"]:
print("Config files already downloaded, skipping...")
return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = [
"PhoneToVq8192.json",
"Vocoder.json",
"Vq32ToVq8192.json",
"Vq8192ToMels.json",
"hubert_large_l18_c32.yaml",
]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(
repo_id="amphion/Vevo",
filename=f"config/{file}",
repo_type="model",
)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Copy file to target location
subprocess.run(["cp", file_data, file_path])
except Exception as e:
print(f"Error downloading config file {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
# Device configuration
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
# Initialize pipeline dictionary
inference_pipelines = {}
# Download all necessary model resources at startup
def preload_all_resources():
print("Preloading all model resources...")
# Download configuration files
setup_configs()
# Store the downloaded model paths
global downloaded_content_tokenizer_path
global downloaded_content_style_tokenizer_path
global downloaded_ar_vq32_path
global downloaded_ar_phone_path
global downloaded_fmt_path
global downloaded_vocoder_path
# Download Content Tokenizer (vq32)
if not downloaded_resources["tokenizer_vq32"]:
print("Preloading Content Tokenizer (vq32)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
downloaded_content_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq32"] = True
print("Content Tokenizer (vq32) download completed")
# Download Content-Style Tokenizer (vq8192)
if not downloaded_resources["tokenizer_vq8192"]:
print("Preloading Content-Style Tokenizer (vq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
downloaded_content_style_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq8192"] = True
print("Content-Style Tokenizer (vq8192) download completed")
# Download Autoregressive Transformer (Vq32ToVq8192)
if not downloaded_resources["ar_Vq32ToVq8192"]:
print("Preloading Autoregressive Transformer (Vq32ToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
downloaded_ar_vq32_path = local_dir
downloaded_resources["ar_Vq32ToVq8192"] = True
print("Autoregressive Transformer (Vq32ToVq8192) download completed")
# Download Autoregressive Transformer (PhoneToVq8192)
if not downloaded_resources["ar_PhoneToVq8192"]:
print("Preloading Autoregressive Transformer (PhoneToVq8192)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
downloaded_ar_phone_path = local_dir
downloaded_resources["ar_PhoneToVq8192"] = True
print("Autoregressive Transformer (PhoneToVq8192) download completed")
# Download Flow Matching Transformer
if not downloaded_resources["fmt_Vq8192ToMels"]:
print("Preloading Flow Matching Transformer (Vq8192ToMels)...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
downloaded_fmt_path = local_dir
downloaded_resources["fmt_Vq8192ToMels"] = True
print("Flow Matching Transformer (Vq8192ToMels) download completed")
# Download Vocoder
if not downloaded_resources["vocoder"]:
print("Preloading Vocoder...")
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
downloaded_vocoder_path = local_dir
downloaded_resources["vocoder"] = True
print("Vocoder download completed")
print("All model resources preloading completed!")
# Initialize path variables to store downloaded model paths
downloaded_content_tokenizer_path = None
downloaded_content_style_tokenizer_path = None
downloaded_ar_vq32_path = None
downloaded_ar_phone_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
# Preload all resources before creating the Gradio interface
preload_all_resources()
def get_pipeline(pipeline_type):
if pipeline_type in inference_pipelines:
return inference_pipelines[pipeline_type]
# Initialize pipeline based on the required pipeline type
if pipeline_type == "style" or pipeline_type == "voice":
# Use already downloaded Content Tokenizer
if downloaded_resources["tokenizer_vq32"]:
content_tokenizer_ckpt_path = os.path.join(
downloaded_content_tokenizer_path, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
if downloaded_resources["ar_Vq32ToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_vq32_path, "contentstyle_modeling/Vq32ToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "timbre":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "tts":
# Use already downloaded Content-Style Tokenizer
if downloaded_resources["tokenizer_vq8192"]:
content_style_tokenizer_ckpt_path = os.path.join(
downloaded_content_style_tokenizer_path, "tokenizer/vq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# Use already downloaded Autoregressive Transformer (TTS specific)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
if downloaded_resources["ar_PhoneToVq8192"]:
ar_ckpt_path = os.path.join(
downloaded_ar_phone_path, "contentstyle_modeling/PhoneToVq8192"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# Use already downloaded Flow Matching Transformer
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
if downloaded_resources["fmt_Vq8192ToMels"]:
fmt_ckpt_path = os.path.join(
downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# Use already downloaded Vocoder
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
if downloaded_resources["vocoder"]:
vocoder_ckpt_path = os.path.join(
downloaded_vocoder_path, "acoustic_modeling/Vocoder"
)
else:
# Fallback to direct download
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# Initialize pipeline
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
# Cache pipeline instance
inference_pipelines[pipeline_type] = inference_pipeline
return inference_pipeline
# Implement VEVO functionality functions
@spaces.GPU()
def vevo_style(content_wav, style_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
output_path = "wav/output_vevostyle.wav"
# Check and process audio data
if content_wav is None or style_wav is None:
raise ValueError("Please upload audio files")
# Process audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
if isinstance(style_wav[0], np.ndarray):
style_data, style_sr = style_wav
else:
style_sr, style_data = style_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
# Save audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
try:
# Get pipeline
pipeline = get_pipeline("style")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_content_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevotimbre.wav"
# Check and process audio data
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process reference audio format
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
# Ensure single channel
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
reference_data = np.mean(reference_data, axis=1)
# Resample to 24kHz
if reference_sr != 24000:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
reference_sr = 24000
else:
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
# Normalize volume
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
try:
# Get pipeline
pipeline = get_pipeline("timbre")
# Inference
gen_audio = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevovoice.wav"
# Check and process audio data
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
raise ValueError("Please upload all required audio files")
# Process content audio format
if isinstance(content_wav, tuple) and len(content_wav) == 2:
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
# Ensure single channel
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
# Resample to 24kHz
if content_sr != 24000:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
else:
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
# Normalize volume
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid content audio format")
# Process style reference audio format
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
if isinstance(style_reference_wav[0], np.ndarray):
style_data, style_sr = style_reference_wav
else:
style_sr, style_data = style_reference_wav
# Ensure single channel
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
style_data = np.mean(style_data, axis=1)
# Resample to 24kHz
if style_sr != 24000:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
style_sr = 24000
else:
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
# Normalize volume
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid style reference audio format")
# Process timbre reference audio format
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
if isinstance(timbre_reference_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_reference_wav
else:
timbre_sr, timbre_data = timbre_reference_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid timbre reference audio format")
# Print debug information
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
# Save uploaded audio
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
try:
# Get pipeline
pipeline = get_pipeline("voice")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_timbre_path,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
@spaces.GPU()
def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_language="en", ref_language="en", style_ref_text_language="en"):
temp_ref_path = "wav/temp_ref.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevotts.wav"
# Check and process audio data
if ref_wav is None:
raise ValueError("Please upload a reference audio file")
# Process reference audio format
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
if isinstance(ref_wav[0], np.ndarray):
ref_data, ref_sr = ref_wav
else:
ref_sr, ref_data = ref_wav
# Ensure single channel
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
ref_data = np.mean(ref_data, axis=1)
# Resample to 24kHz
if ref_sr != 24000:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_sr = 24000
else:
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
# Normalize volume
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
else:
raise ValueError("Invalid reference audio format")
# Print debug information
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
if style_ref_text:
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
# Save uploaded audio
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
if timbre_ref_wav is not None:
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
if isinstance(timbre_ref_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_ref_wav
else:
timbre_sr, timbre_data = timbre_ref_wav
# Ensure single channel
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
timbre_data = np.mean(timbre_data, axis=1)
# Resample to 24kHz
if timbre_sr != 24000:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
timbre_sr = 24000
else:
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
# Normalize volume
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
else:
raise ValueError("Invalid timbre reference audio format")
else:
temp_timbre_path = temp_ref_path
try:
# Get pipeline
pipeline = get_pipeline("tts")
# Inference
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=temp_ref_path,
timbre_ref_wav_path=temp_timbre_path,
style_ref_wav_text=style_ref_text,
src_text_language=src_language,
style_ref_wav_text_language=style_ref_text_language,
)
# Check if generated audio is numerical anomaly
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
print("Warning: Generated audio contains NaN or Inf values")
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
# Save generated audio
save_audio(gen_audio, output_path=output_path)
return output_path
except Exception as e:
print(f"Error during processing: {e}")
import traceback
traceback.print_exc()
raise e
# Create Gradio interface
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
# Add link tag line
with gr.Row(elem_id="links_row"):
gr.HTML("""
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
<a href="https://arxiv.org/abs/2502.07243" target="_blank" style="text-decoration: none;">
<img alt="arXiv Paper" src="https://img.shields.io/badge/arXiv-Paper-red">
</a>
<a href="https://openreview.net/pdf?id=anQDiQZhDP" target="_blank" style="text-decoration: none;">
<img alt="ICLR Paper" src="https://img.shields.io/badge/ICLR-Paper-64b63a">
</a>
<a href="https://huggingface.co/amphion/Vevo" target="_blank" style="text-decoration: none;">
<img alt="HuggingFace Model" src="https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow">
</a>
<a href="https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo" target="_blank" style="text-decoration: none;">
<img alt="GitHub Repo" src="https://img.shields.io/badge/GitHub-Repo-blue">
</a>
</div>
""")
with gr.Tab("Vevo-Timbre"):
gr.Markdown("### Vevo-Timbre: Maintain style but transfer timbre")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
timbre_button = gr.Button("Generate")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
with gr.Tab("Vevo-Style"):
gr.Markdown("### Vevo-Style: Maintain timbre but transfer style (accent, emotion, etc.)")
with gr.Row():
with gr.Column():
style_content = gr.Audio(label="Source Audio", type="numpy")
style_reference = gr.Audio(label="Style Reference", type="numpy")
style_button = gr.Button("Generate")
with gr.Column():
style_output = gr.Audio(label="Result")
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
with gr.Tab("Vevo-Voice"):
gr.Markdown("### Vevo-Voice: Transfers both style and timbre with separate references")
with gr.Row():
with gr.Column():
voice_content = gr.Audio(label="Source Audio", type="numpy")
voice_style_reference = gr.Audio(label="Style Reference", type="numpy")
voice_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
voice_button = gr.Button("Generate")
with gr.Column():
voice_output = gr.Audio(label="Result")
voice_button.click(vevo_voice, inputs=[voice_content, voice_style_reference, voice_timbre_reference], outputs=voice_output)
with gr.Tab("Vevo-TTS"):
gr.Markdown("### Vevo-TTS: Text-to-speech with separate style and timbre references")
with gr.Row():
with gr.Column():
tts_text = gr.Textbox(label="Target Text", placeholder="Enter text to synthesize...", lines=3)
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Text Language", value="en")
tts_reference = gr.Audio(label="Style Reference", type="numpy")
tts_style_ref_text = gr.Textbox(label="Style Reference Text", placeholder="Enter style reference text...", lines=3)
tts_style_ref_text_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="Style Reference Text Language", value="en")
tts_timbre_reference = gr.Audio(label="Timbre Reference", type="numpy")
tts_button = gr.Button("Generate")
with gr.Column():
tts_output = gr.Audio(label="Result")
tts_button.click(
vevo_tts,
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_style_ref_text, tts_src_language, tts_style_ref_text_language],
outputs=tts_output
)
gr.Markdown("""
## About VEVO
VEVO is a versatile voice synthesis and conversion model that offers four main functionalities:
1. **Vevo-Style**: Maintains timbre but transfers style (accent, emotion, etc.)
2. **Vevo-Timbre**: Maintains style but transfers timbre
3. **Vevo-Voice**: Transfers both style and timbre with separate references
4. **Vevo-TTS**: Text-to-speech with separate style and timbre references
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
""")
# Launch application
demo.launch() |