Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,424 Bytes
6183d1a 7eb54a6 6183d1a af70a95 6183d1a af70a95 6183d1a 7eb54a6 6183d1a 7eb54a6 6183d1a af70a95 6183d1a af70a95 6183d1a af70a95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import re
import tempfile
from collections import Counter
from pathlib import Path
from typing import Literal
import gradio as gr
import spaces
import torch
from NatureLM.config import Config
from NatureLM.models.NatureLM import NatureLM
from NatureLM.utils import generate_sample_batches, prepare_sample_waveforms
CONFIG: Config = None
MODEL: NatureLM = None
@spaces.GPU
def prompt_lm(audios: list[str], messages: list[dict[str, str]]):
cuda_enabled = torch.cuda.is_available()
samples = prepare_sample_waveforms(audios, cuda_enabled)
prompt_text = MODEL.llama_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
).removeprefix(MODEL.llama_tokenizer.bos_token)
prompt_text = re.sub(
r"<\|start_header_id\|>system<\|end_header_id\|>\n\nCutting Knowledge Date: [^\n]+\nToday Date: [^\n]+\n\n<\|eot_id\|>",
"",
prompt_text,
) # exclude the system header from the prompt
prompt_text = re.sub("\\n", r"\\n", prompt_text) # FIXME this is a hack to fix the issue #34
print(f"{prompt_text=}")
with torch.cuda.amp.autocast(dtype=torch.float16):
llm_answer = MODEL.generate(samples, CONFIG.generate, prompts=[prompt_text])
return llm_answer[0]
def _multimodal_textbox_factory():
return gr.MultimodalTextbox(
value=None,
interactive=True,
file_count="multiple",
placeholder="Enter message or upload file...",
show_label=False,
submit_btn="Add input",
file_types=["audio"],
)
def user_message(content):
return {"role": "user", "content": content}
def add_message(history, message):
for x in message["files"]:
history.append(user_message({"path": x}))
if message["text"]:
history.append(user_message(message["text"]))
return history, _multimodal_textbox_factory()
def combine_model_inputs(msgs: list[dict[str, str]]) -> dict[str, list[str]]:
messages = []
files = []
for msg in msgs:
print(msg, messages, files)
match msg:
case {"content": (path,)}:
messages.append({"role": msg["role"], "content": "<Audio><AudioHere></Audio> "})
files.append(path)
case _:
messages.append(msg)
joined_messages = []
# join consecutive messages from the same role
for msg in messages:
if joined_messages and joined_messages[-1]["role"] == msg["role"]:
joined_messages[-1]["content"] += msg["content"]
else:
joined_messages.append(msg)
return {"messages": joined_messages, "files": files}
def bot_response(history: list):
print(type(history))
combined_inputs = combine_model_inputs(history)
response = prompt_lm(combined_inputs["files"], combined_inputs["messages"])
history.append({"role": "assistant", "content": response})
return history
def _chat_tab(examples):
chatbot = gr.Chatbot(
label="Model inputs",
elem_id="chatbot",
bubble_full_width=False,
type="messages",
render_markdown=False,
# editable="user", # disable because of https://github.com/gradio-app/gradio/issues/10320
resizeable=True,
)
chat_input = _multimodal_textbox_factory()
send_all = gr.Button("Send all", elem_id="send-all")
clear_button = gr.ClearButton(components=[chatbot, chat_input], visible=False)
chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
bot_msg = send_all.click(
bot_response,
[chatbot],
[chatbot],
api_name="bot_response",
)
bot_msg.then(lambda: gr.ClearButton(visible=True), None, [clear_button])
clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])
gr.Examples(
list(examples.values()),
chatbot,
chatbot,
example_labels=list(examples.keys()),
examples_per_page=20,
)
def summarize_batch_results(results):
summary = Counter(results)
summary_str = "\n".join(f"{k}: {v}" for k, v in summary.most_common())
return summary_str
def run_batch_inference(files, task, progress=gr.Progress()) -> str:
outputs = []
prompt = "<Audio><AudioHere></Audio> " + task
for file in progress.tqdm(files):
outputs.append(prompt_lm([file], [{"role": "user", "content": prompt}]))
batch_summary: str = summarize_batch_results(outputs)
report = f"Batch summary:\n{batch_summary}\n\n"
return report
def multi_extension_glob_mask(mask_base, *extensions):
mask_ext = ["[{}]".format("".join(set(c))) for c in zip(*extensions)]
if not mask_ext or len(set(len(e) for e in extensions)) > 1:
mask_ext.append("*")
return mask_base + "".join(mask_ext)
def _batch_tab(file_selection: Literal["upload", "explorer"] = "upload"):
if file_selection == "explorer":
files = gr.FileExplorer(
glob=multi_extension_glob_mask("**.", "mp3", "flac", "wav"),
label="Select audio files",
file_count="multiple",
)
elif file_selection == "upload":
files = gr.Files(label="Uploaded files", file_types=["audio"], height=300)
task = gr.Textbox(label="Task", placeholder="Enter task...", show_label=True)
process_btn = gr.Button("Process")
output = gr.TextArea()
process_btn.click(
run_batch_inference,
[files, task],
[output],
)
def to_raven_format(outputs: dict[int, str], chunk_len: int = 10) -> str:
def get_line(row, start, end, annotation):
return f"{row}\tSpectrogram 1\t1\t{start}\t{end}\t0\t8000\t{annotation}"
raven_output = ["Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tAnnotation"]
current_offset = 0
last_label = ""
row = 1
# The "Selection" column is just the row number.
# The "view" column will always say "Spectrogram 1".
# Channel can always be "1".
# For the frequency bounds we can just use 0 and 1/2 the sample rate
for offset, label in sorted(outputs.items()):
if label != last_label and last_label:
raven_output.append(get_line(row, current_offset, offset, last_label))
current_offset = offset
row += 1
if not last_label:
current_offset = offset
if label != "None":
last_label = label
else:
last_label = ""
if last_label:
raven_output.append(get_line(row, current_offset, current_offset + chunk_len, last_label))
return "\n".join(raven_output)
@spaces.GPU
def _run_long_recording_inference(file, task, chunk_len: int = 10, hop_len: int = 5, progress=gr.Progress()):
cuda_enabled = torch.cuda.is_available()
outputs = {}
offset = 0
prompt = f"<Audio><AudioHere></Audio> {task}"
prompt = MODEL.prompt_template.format(prompt)
for batch in progress.tqdm(generate_sample_batches(file, cuda_enabled, chunk_len=chunk_len, hop_len=hop_len)):
prompt_strs = [prompt] * len(batch["audio_chunk_sizes"])
with torch.cuda.amp.autocast(dtype=torch.float16):
llm_answers = MODEL.generate(batch, CONFIG.generate, prompts=prompt_strs)
for answer in llm_answers:
outputs[offset] = answer
offset += hop_len
report = f"Number of chunks: {len(outputs)}\n\n"
for offset in sorted(outputs.keys()):
report += f"{offset:02d}s:\t{outputs[offset]}\n"
raven_output = to_raven_format(outputs, chunk_len=chunk_len)
with tempfile.NamedTemporaryFile(mode="w", prefix="raven-", suffix=".txt", delete=False) as f:
f.write(raven_output)
raven_file = f.name
return report, raven_file
def _long_recording_tab():
audio_input = gr.Audio(label="Upload audio file", type="filepath")
task = gr.Dropdown(
[
"What are the common names for the species in the audio, if any?",
"Caption the audio.",
"Caption the audio, using the scientific name for any animal species.",
"Caption the audio, using the common name for any animal species.",
"What is the scientific name for the focal species in the audio?",
"What is the common name for the focal species in the audio?",
"What is the family of the focal species in the audio?",
"What is the genus of the focal species in the audio?",
"What is the taxonomic name of the focal species in the audio?",
"What call types are heard from the focal species in the audio?",
"What is the life stage of the focal species in the audio?",
],
label="Tasks",
allow_custom_value=True,
)
with gr.Accordion("Advanced options", open=False):
hop_len = gr.Slider(1, 10, 5, label="Hop length (seconds)", step=1)
chunk_len = gr.Slider(1, 10, 10, label="Chunk length (seconds)", step=1)
process_btn = gr.Button("Process")
output = gr.TextArea()
download_raven = gr.DownloadButton("Download Raven file")
process_btn.click(
_run_long_recording_inference,
[audio_input, task, chunk_len, hop_len],
[output, download_raven],
)
def main(
assets_dir: Path,
cfg_path: str | Path,
device: str = "cuda",
):
cfg = Config.from_sources(yaml_file=cfg_path)
model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
model.to(device)
model.eval()
global MODEL, CONFIG
MODEL = model
CONFIG = cfg
laz_audio = assets_dir / "Lazuli_Bunting_yell-YELLLAZB20160625SM303143.mp3"
frog_audio = assets_dir / "nri-GreenTreeFrogEvergladesNP.mp3"
robin_audio = assets_dir / "yell-YELLAMRO20160506SM3.mp3"
examples = {
"Caption the audio (Lazuli Bunting)": [
[
user_message({"path": str(laz_audio)}),
user_message("Caption the audio."),
]
],
"Caption the audio (Green Tree Frog)": [
[
user_message({"path": str(frog_audio)}),
user_message("Caption the audio, using the common name for any animal species."),
]
],
"Caption the audio (American Robin)": [
[
user_message({"path": str(robin_audio)}),
user_message("Caption the audio."),
]
],
}
with gr.Blocks(title="NatureLM-audio", theme=gr.themes.Default(primary_hue="slate")) as app:
with gr.Tabs():
with gr.Tab("Chat"):
_chat_tab(examples)
with gr.Tab("Batch"):
_batch_tab()
with gr.Tab("Long Recording"):
_long_recording_tab()
app.launch(
favicon_path=str(assets_dir / "esp_favicon.png"),
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="NatureLM-audio Gradio app")
parser.add_argument(
"--assets-dir",
type=Path,
default=Path(__file__).parent / "assets",
help="Directory containing the assets (favicon, examples, etc.)",
)
parser.add_argument(
"--cfg-path",
type=str,
default=Path(__file__).parent / "configs/inference.yml",
help="Path to the config file",
)
args = parser.parse_args()
main(args.assets_dir, args.cfg_path)
|