File size: 11,424 Bytes
6183d1a
 
 
 
 
 
 
7eb54a6
6183d1a
 
af70a95
6183d1a
 
 
af70a95
6183d1a
 
 
7eb54a6
6183d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eb54a6
6183d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af70a95
 
 
 
 
 
6183d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af70a95
 
 
 
 
 
6183d1a
 
af70a95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import re
import tempfile
from collections import Counter
from pathlib import Path
from typing import Literal

import gradio as gr
import spaces
import torch

from NatureLM.config import Config
from NatureLM.models.NatureLM import NatureLM
from NatureLM.utils import generate_sample_batches, prepare_sample_waveforms

CONFIG: Config = None
MODEL: NatureLM = None


@spaces.GPU
def prompt_lm(audios: list[str], messages: list[dict[str, str]]):
    cuda_enabled = torch.cuda.is_available()
    samples = prepare_sample_waveforms(audios, cuda_enabled)
    prompt_text = MODEL.llama_tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    ).removeprefix(MODEL.llama_tokenizer.bos_token)

    prompt_text = re.sub(
        r"<\|start_header_id\|>system<\|end_header_id\|>\n\nCutting Knowledge Date: [^\n]+\nToday Date: [^\n]+\n\n<\|eot_id\|>",
        "",
        prompt_text,
    )  # exclude the system header from the prompt
    prompt_text = re.sub("\\n", r"\\n", prompt_text)  # FIXME this is a hack to fix the issue #34

    print(f"{prompt_text=}")
    with torch.cuda.amp.autocast(dtype=torch.float16):
        llm_answer = MODEL.generate(samples, CONFIG.generate, prompts=[prompt_text])
    return llm_answer[0]


def _multimodal_textbox_factory():
    return gr.MultimodalTextbox(
        value=None,
        interactive=True,
        file_count="multiple",
        placeholder="Enter message or upload file...",
        show_label=False,
        submit_btn="Add input",
        file_types=["audio"],
    )


def user_message(content):
    return {"role": "user", "content": content}


def add_message(history, message):
    for x in message["files"]:
        history.append(user_message({"path": x}))
    if message["text"]:
        history.append(user_message(message["text"]))
    return history, _multimodal_textbox_factory()


def combine_model_inputs(msgs: list[dict[str, str]]) -> dict[str, list[str]]:
    messages = []
    files = []
    for msg in msgs:
        print(msg, messages, files)
        match msg:
            case {"content": (path,)}:
                messages.append({"role": msg["role"], "content": "<Audio><AudioHere></Audio> "})
                files.append(path)
            case _:
                messages.append(msg)
    joined_messages = []
    # join consecutive messages from the same role
    for msg in messages:
        if joined_messages and joined_messages[-1]["role"] == msg["role"]:
            joined_messages[-1]["content"] += msg["content"]
        else:
            joined_messages.append(msg)

    return {"messages": joined_messages, "files": files}


def bot_response(history: list):
    print(type(history))
    combined_inputs = combine_model_inputs(history)
    response = prompt_lm(combined_inputs["files"], combined_inputs["messages"])
    history.append({"role": "assistant", "content": response})

    return history


def _chat_tab(examples):
    chatbot = gr.Chatbot(
        label="Model inputs",
        elem_id="chatbot",
        bubble_full_width=False,
        type="messages",
        render_markdown=False,
        # editable="user",  # disable because of https://github.com/gradio-app/gradio/issues/10320
        resizeable=True,
    )

    chat_input = _multimodal_textbox_factory()
    send_all = gr.Button("Send all", elem_id="send-all")
    clear_button = gr.ClearButton(components=[chatbot, chat_input], visible=False)

    chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
    bot_msg = send_all.click(
        bot_response,
        [chatbot],
        [chatbot],
        api_name="bot_response",
    )

    bot_msg.then(lambda: gr.ClearButton(visible=True), None, [clear_button])
    clear_button.click(lambda: gr.ClearButton(visible=False), None, [clear_button])

    gr.Examples(
        list(examples.values()),
        chatbot,
        chatbot,
        example_labels=list(examples.keys()),
        examples_per_page=20,
    )


def summarize_batch_results(results):
    summary = Counter(results)
    summary_str = "\n".join(f"{k}: {v}" for k, v in summary.most_common())
    return summary_str


def run_batch_inference(files, task, progress=gr.Progress()) -> str:
    outputs = []
    prompt = "<Audio><AudioHere></Audio> " + task

    for file in progress.tqdm(files):
        outputs.append(prompt_lm([file], [{"role": "user", "content": prompt}]))

    batch_summary: str = summarize_batch_results(outputs)
    report = f"Batch summary:\n{batch_summary}\n\n"
    return report


def multi_extension_glob_mask(mask_base, *extensions):
    mask_ext = ["[{}]".format("".join(set(c))) for c in zip(*extensions)]
    if not mask_ext or len(set(len(e) for e in extensions)) > 1:
        mask_ext.append("*")
    return mask_base + "".join(mask_ext)


def _batch_tab(file_selection: Literal["upload", "explorer"] = "upload"):
    if file_selection == "explorer":
        files = gr.FileExplorer(
            glob=multi_extension_glob_mask("**.", "mp3", "flac", "wav"),
            label="Select audio files",
            file_count="multiple",
        )
    elif file_selection == "upload":
        files = gr.Files(label="Uploaded files", file_types=["audio"], height=300)
    task = gr.Textbox(label="Task", placeholder="Enter task...", show_label=True)

    process_btn = gr.Button("Process")
    output = gr.TextArea()

    process_btn.click(
        run_batch_inference,
        [files, task],
        [output],
    )


def to_raven_format(outputs: dict[int, str], chunk_len: int = 10) -> str:
    def get_line(row, start, end, annotation):
        return f"{row}\tSpectrogram 1\t1\t{start}\t{end}\t0\t8000\t{annotation}"

    raven_output = ["Selection\tView\tChannel\tBegin Time (s)\tEnd Time (s)\tLow Freq (Hz)\tHigh Freq (Hz)\tAnnotation"]
    current_offset = 0
    last_label = ""
    row = 1

    # The "Selection" column is just the row number.
    # The "view" column will always say "Spectrogram 1".
    # Channel can always be "1".
    # For the frequency bounds we can just use 0 and 1/2 the sample rate
    for offset, label in sorted(outputs.items()):
        if label != last_label and last_label:
            raven_output.append(get_line(row, current_offset, offset, last_label))
            current_offset = offset
            row += 1
        if not last_label:
            current_offset = offset
        if label != "None":
            last_label = label
        else:
            last_label = ""
    if last_label:
        raven_output.append(get_line(row, current_offset, current_offset + chunk_len, last_label))

    return "\n".join(raven_output)


@spaces.GPU
def _run_long_recording_inference(file, task, chunk_len: int = 10, hop_len: int = 5, progress=gr.Progress()):
    cuda_enabled = torch.cuda.is_available()
    outputs = {}
    offset = 0

    prompt = f"<Audio><AudioHere></Audio> {task}"
    prompt = MODEL.prompt_template.format(prompt)

    for batch in progress.tqdm(generate_sample_batches(file, cuda_enabled, chunk_len=chunk_len, hop_len=hop_len)):
        prompt_strs = [prompt] * len(batch["audio_chunk_sizes"])
        with torch.cuda.amp.autocast(dtype=torch.float16):
            llm_answers = MODEL.generate(batch, CONFIG.generate, prompts=prompt_strs)
        for answer in llm_answers:
            outputs[offset] = answer
            offset += hop_len

    report = f"Number of chunks: {len(outputs)}\n\n"
    for offset in sorted(outputs.keys()):
        report += f"{offset:02d}s:\t{outputs[offset]}\n"

    raven_output = to_raven_format(outputs, chunk_len=chunk_len)
    with tempfile.NamedTemporaryFile(mode="w", prefix="raven-", suffix=".txt", delete=False) as f:
        f.write(raven_output)
        raven_file = f.name

    return report, raven_file


def _long_recording_tab():
    audio_input = gr.Audio(label="Upload audio file", type="filepath")
    task = gr.Dropdown(
        [
            "What are the common names for the species in the audio, if any?",
            "Caption the audio.",
            "Caption the audio, using the scientific name for any animal species.",
            "Caption the audio, using the common name for any animal species.",
            "What is the scientific name for the focal species in the audio?",
            "What is the common name for the focal species in the audio?",
            "What is the family of the focal species in the audio?",
            "What is the genus of the focal species in the audio?",
            "What is the taxonomic name of the focal species in the audio?",
            "What call types are heard from the focal species in the audio?",
            "What is the life stage of the focal species in the audio?",
        ],
        label="Tasks",
        allow_custom_value=True,
    )
    with gr.Accordion("Advanced options", open=False):
        hop_len = gr.Slider(1, 10, 5, label="Hop length (seconds)", step=1)
        chunk_len = gr.Slider(1, 10, 10, label="Chunk length (seconds)", step=1)
    process_btn = gr.Button("Process")
    output = gr.TextArea()
    download_raven = gr.DownloadButton("Download Raven file")

    process_btn.click(
        _run_long_recording_inference,
        [audio_input, task, chunk_len, hop_len],
        [output, download_raven],
    )


def main(
    assets_dir: Path,
    cfg_path: str | Path,
    device: str = "cuda",
):
    cfg = Config.from_sources(yaml_file=cfg_path)
    model = NatureLM.from_pretrained("EarthSpeciesProject/NatureLM-audio")
    model.to(device)
    model.eval()

    global MODEL, CONFIG
    MODEL = model
    CONFIG = cfg

    laz_audio = assets_dir / "Lazuli_Bunting_yell-YELLLAZB20160625SM303143.mp3"
    frog_audio = assets_dir / "nri-GreenTreeFrogEvergladesNP.mp3"
    robin_audio = assets_dir / "yell-YELLAMRO20160506SM3.mp3"

    examples = {
        "Caption the audio (Lazuli Bunting)": [
            [
                user_message({"path": str(laz_audio)}),
                user_message("Caption the audio."),
            ]
        ],
        "Caption the audio (Green Tree Frog)": [
            [
                user_message({"path": str(frog_audio)}),
                user_message("Caption the audio, using the common name for any animal species."),
            ]
        ],
        "Caption the audio (American Robin)": [
            [
                user_message({"path": str(robin_audio)}),
                user_message("Caption the audio."),
            ]
        ],
    }

    with gr.Blocks(title="NatureLM-audio", theme=gr.themes.Default(primary_hue="slate")) as app:
        with gr.Tabs():
            with gr.Tab("Chat"):
                _chat_tab(examples)
            with gr.Tab("Batch"):
                _batch_tab()
            with gr.Tab("Long Recording"):
                _long_recording_tab()

    app.launch(
        favicon_path=str(assets_dir / "esp_favicon.png"),
    )

if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(description="NatureLM-audio Gradio app")
    parser.add_argument(
        "--assets-dir",
        type=Path,
        default=Path(__file__).parent / "assets",
        help="Directory containing the assets (favicon, examples, etc.)",
    )
    parser.add_argument(
        "--cfg-path",
        type=str,
        default=Path(__file__).parent / "configs/inference.yml",
        help="Path to the config file",
    )
    args = parser.parse_args()

    main(args.assets_dir, args.cfg_path)