import os, io from fastapi import FastAPI, UploadFile, File, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, HTMLResponse, FileResponse from fastapi.staticfiles import StaticFiles from huggingface_hub import InferenceClient from PyPDF2 import PdfReader from docx import Document from PIL import Image from io import BytesIO # ----------------------------------------------------------------------------- # CONFIGURATION # ----------------------------------------------------------------------------- HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN") # injected as a secret in HF Spaces PORT = int(os.getenv("PORT", 7860)) # default for local, HF Spaces overrides app = FastAPI( title="AI‑Powered Web‑App API", description="Backend endpoints for summarisation, captioning and QA", version="1.2.0", ) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Serve optional static assets **only if the folder exists** from pathlib import Path static_dir = Path("static") if static_dir.exists(): app.mount("/static", StaticFiles(directory="static"), name="static"), name="static") # ----------------------------------------------------------------------------- # MODEL CLIENTS (remote Hugging Face Inference API) # ----------------------------------------------------------------------------- summary_client = InferenceClient("facebook/bart-large-cnn", token=HUGGINGFACE_TOKEN) qa_client = InferenceClient("deepset/roberta-base-squad2", token=HUGGINGFACE_TOKEN) image_caption_client = InferenceClient("nlpconnect/vit-gpt2-image-captioning", token=HUGGINGFACE_TOKEN) # ----------------------------------------------------------------------------- # UTILITY FUNCTIONS # ----------------------------------------------------------------------------- def extract_text_from_pdf(content: bytes) -> str: reader = PdfReader(io.BytesIO(content)) return "\n".join(page.extract_text() or "" for page in reader.pages).strip() def extract_text_from_docx(content: bytes) -> str: doc = Document(io.BytesIO(content)) return "\n".join(p.text for p in doc.paragraphs).strip() def process_uploaded_file(file: UploadFile) -> str: content = file.file.read() extension = file.filename.split(".")[-1].lower() if extension == "pdf": return extract_text_from_pdf(content) if extension == "docx": return extract_text_from_docx(content) if extension == "txt": return content.decode("utf-8").strip() raise ValueError("Unsupported file type") # ----------------------------------------------------------------------------- # ROUTES # ----------------------------------------------------------------------------- @app.get("/", response_class=HTMLResponse) async def serve_index(): """Serve the frontend HTML file.""" return FileResponse("index.html") # ---------- Summarisation ----------------------------------------------------- @app.post("/api/summarize") async def summarize_document(file: UploadFile = File(...)): try: text = process_uploaded_file(file) if len(text) < 20: return {"result": "Document too short to summarise."} summary_raw = summary_client.summarization(text[:3000]) # Normalise to plain string if isinstance(summary_raw, list): summary_txt = summary_raw[0].get("summary_text", str(summary_raw)) elif isinstance(summary_raw, dict): summary_txt = summary_raw.get("summary_text", str(summary_raw)) else: summary_txt = str(summary_raw) return {"result": summary_txt} except Exception as exc: return JSONResponse(status_code=500, content={"error": f"Summarisation failure: {exc}"}) # ---------- Image Caption ----------------------------------------------------- @app.post("/api/caption") async def caption_image(file: UploadFile = File(...)): try: image_bytes = await file.read() image_pil = Image.open(io.BytesIO(image_bytes)).convert("RGB") image_pil.thumbnail((1024, 1024)) buf = BytesIO(); image_pil.save(buf, format="JPEG"); img = buf.getvalue() result = image_caption_client.image_to_text(img) if isinstance(result, dict): caption = result.get("generated_text") or result.get("caption") or "No caption found." elif isinstance(result, list): caption = result[0].get("generated_text", "No caption found.") else: caption = str(result) return {"result": caption} except Exception as exc: return JSONResponse(status_code=500, content={"error": f"Caption failure: {exc}"}) # ---------- Question Answering ---------------------------------------------- @app.post("/api/qa") async def question_answering(file: UploadFile = File(...), question: str = Form(...)): try: # If it's an image, first caption it to build context if file.content_type.startswith("image/"): image_bytes = await file.read() pil = Image.open(io.BytesIO(image_bytes)).convert("RGB"); pil.thumbnail((1024, 1024)) b = BytesIO(); pil.save(b, format="JPEG"); img = b.getvalue() res = image_caption_client.image_to_text(img) context = res.get("generated_text") if isinstance(res, dict) else str(res) else: context = process_uploaded_file(file)[:3000] if not context: return {"result": "No context – cannot answer."} answer = qa_client.question_answering(question=question, context=context) return {"result": answer.get("answer", "No answer found.")} except Exception as exc: return JSONResponse(status_code=500, content={"error": f"QA failure: {exc}"}) # ---------- Health check ------------------------------------------------------ @app.get("/api/health") async def health(): return { "status": "healthy", "hf_token_set": bool(HUGGINGFACE_TOKEN), "version": app.version, } # ----------------------------------------------------------------------------- # ENTRYPOINT # ----------------------------------------------------------------------------- if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=PORT)