import streamlit as st import layer from transformers import AutoModelWithLMHead, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL") def get_sql(query): input_text = "translate English to SQL: %s " % query features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask']) return tokenizer.decode(output[0]) # model = layer.get_model('layer/t5-fine-tuning-with-layer/models/t5-english-to-sql').get_train() # tokenizer = layer.get_model('layer/t5-fine-tuning-with-layer/models/t5-tokenizer').get_train() # def convert(query): # inputs = tokenizer.encode(f"translate English to SQL: {query}", return_tensors="pt") # outputs = model.generate(inputs, max_length=1024) # sql = tokenizer.decode(outputs[0], skip_special_tokens=True) # return sql query = st.text_input("Enter Text here", value="") output = get_sql(query) st.text_area(label="Output Sql Query:", value=output, height=100)