|
from enum import Enum, unique |
|
|
|
import cv2 |
|
import torch |
|
from basicsr.utils import img2tensor |
|
from ldm.util import resize_numpy_image |
|
from PIL import Image |
|
from torch import autocast |
|
|
|
|
|
@unique |
|
class ExtraCondition(Enum): |
|
sketch = 0 |
|
keypose = 1 |
|
seg = 2 |
|
depth = 3 |
|
canny = 4 |
|
style = 5 |
|
color = 6 |
|
openpose = 7 |
|
|
|
|
|
def get_cond_model(opt, cond_type: ExtraCondition): |
|
if cond_type == ExtraCondition.sketch: |
|
from ldm.modules.extra_condition.model_edge import pidinet |
|
model = pidinet() |
|
ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict'] |
|
model.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()}, strict=True) |
|
model.to(opt.device) |
|
return model |
|
elif cond_type == ExtraCondition.seg: |
|
raise NotImplementedError |
|
elif cond_type == ExtraCondition.keypose: |
|
import mmcv |
|
from mmdet.apis import init_detector |
|
from mmpose.apis import init_pose_model |
|
det_config = 'configs/mm/faster_rcnn_r50_fpn_coco.py' |
|
det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' |
|
pose_config = 'configs/mm/hrnet_w48_coco_256x192.py' |
|
pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' |
|
det_config_mmcv = mmcv.Config.fromfile(det_config) |
|
det_model = init_detector(det_config_mmcv, det_checkpoint, device=opt.device) |
|
pose_config_mmcv = mmcv.Config.fromfile(pose_config) |
|
pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=opt.device) |
|
return {'pose_model': pose_model, 'det_model': det_model} |
|
elif cond_type == ExtraCondition.depth: |
|
from ldm.modules.extra_condition.midas.api import MiDaSInference |
|
model = MiDaSInference(model_type='dpt_hybrid').to(opt.device) |
|
return model |
|
elif cond_type == ExtraCondition.canny: |
|
return None |
|
elif cond_type == ExtraCondition.style: |
|
from transformers import CLIPProcessor, CLIPVisionModel |
|
version = 'openai/clip-vit-large-patch14' |
|
processor = CLIPProcessor.from_pretrained(version) |
|
clip_vision_model = CLIPVisionModel.from_pretrained(version).to(opt.device) |
|
return {'processor': processor, 'clip_vision_model': clip_vision_model} |
|
elif cond_type == ExtraCondition.color: |
|
return None |
|
elif cond_type == ExtraCondition.openpose: |
|
from ldm.modules.extra_condition.openpose.api import OpenposeInference |
|
model = OpenposeInference().to(opt.device) |
|
return model |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
def get_cond_sketch(opt, cond_image, cond_inp_type, cond_model=None): |
|
if isinstance(cond_image, str): |
|
edge = cv2.imread(cond_image) |
|
else: |
|
|
|
edge = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
edge = resize_numpy_image(edge, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = edge.shape[:2] |
|
if cond_inp_type == 'sketch': |
|
edge = img2tensor(edge)[0].unsqueeze(0).unsqueeze(0) / 255. |
|
edge = edge.to(opt.device) |
|
elif cond_inp_type == 'image': |
|
edge = img2tensor(edge).unsqueeze(0) / 255. |
|
edge = cond_model(edge.to(opt.device))[-1] |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
edge = edge > 0.5 |
|
edge = edge.float() |
|
|
|
return edge |
|
|
|
|
|
def get_cond_seg(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
seg = cv2.imread(cond_image) |
|
else: |
|
seg = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
seg = resize_numpy_image(seg, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = seg.shape[:2] |
|
if cond_inp_type == 'seg': |
|
seg = img2tensor(seg).unsqueeze(0) / 255. |
|
seg = seg.to(opt.device) |
|
else: |
|
raise NotImplementedError |
|
|
|
return seg |
|
|
|
|
|
def get_cond_keypose(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
pose = cv2.imread(cond_image) |
|
else: |
|
pose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
pose = resize_numpy_image(pose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = pose.shape[:2] |
|
if cond_inp_type == 'keypose': |
|
pose = img2tensor(pose).unsqueeze(0) / 255. |
|
pose = pose.to(opt.device) |
|
elif cond_inp_type == 'image': |
|
from ldm.modules.extra_condition.utils import imshow_keypoints |
|
from mmdet.apis import inference_detector |
|
from mmpose.apis import (inference_top_down_pose_model, process_mmdet_results) |
|
|
|
|
|
with autocast("cuda", dtype=torch.float32): |
|
mmdet_results = inference_detector(cond_model['det_model'], pose) |
|
|
|
person_results = process_mmdet_results(mmdet_results, 1) |
|
|
|
|
|
return_heatmap = False |
|
dataset = cond_model['pose_model'].cfg.data['test']['type'] |
|
|
|
|
|
output_layer_names = None |
|
pose_results, returned_outputs = inference_top_down_pose_model( |
|
cond_model['pose_model'], |
|
pose, |
|
person_results, |
|
bbox_thr=0.2, |
|
format='xyxy', |
|
dataset=dataset, |
|
dataset_info=None, |
|
return_heatmap=return_heatmap, |
|
outputs=output_layer_names) |
|
|
|
|
|
pose = imshow_keypoints(pose, pose_results, radius=2, thickness=2) |
|
pose = img2tensor(pose).unsqueeze(0) / 255. |
|
pose = pose.to(opt.device) |
|
else: |
|
raise NotImplementedError |
|
|
|
return pose |
|
|
|
|
|
def get_cond_depth(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
depth = cv2.imread(cond_image) |
|
else: |
|
depth = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
depth = resize_numpy_image(depth, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = depth.shape[:2] |
|
if cond_inp_type == 'depth': |
|
depth = img2tensor(depth).unsqueeze(0) / 255. |
|
depth = depth.to(opt.device) |
|
elif cond_inp_type == 'image': |
|
depth = img2tensor(depth).unsqueeze(0) / 127.5 - 1.0 |
|
depth = cond_model(depth.to(opt.device)).repeat(1, 3, 1, 1) |
|
depth -= torch.min(depth) |
|
depth /= torch.max(depth) |
|
else: |
|
raise NotImplementedError |
|
|
|
return depth |
|
|
|
|
|
def get_cond_canny(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
canny = cv2.imread(cond_image) |
|
else: |
|
canny = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
canny = resize_numpy_image(canny, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = canny.shape[:2] |
|
if cond_inp_type == 'canny': |
|
canny = img2tensor(canny)[0:1].unsqueeze(0) / 255. |
|
canny = canny.to(opt.device) |
|
elif cond_inp_type == 'image': |
|
canny = cv2.Canny(canny, 100, 200)[..., None] |
|
canny = img2tensor(canny).unsqueeze(0) / 255. |
|
canny = canny.to(opt.device) |
|
else: |
|
raise NotImplementedError |
|
|
|
return canny |
|
|
|
|
|
def get_cond_style(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
assert cond_inp_type == 'image' |
|
if isinstance(cond_image, str): |
|
style = Image.open(cond_image) |
|
else: |
|
|
|
style = Image.fromarray(cond_image) |
|
|
|
style_for_clip = cond_model['processor'](images=style, return_tensors="pt")['pixel_values'] |
|
style_feat = cond_model['clip_vision_model'](style_for_clip.to(opt.device))['last_hidden_state'] |
|
|
|
return style_feat |
|
|
|
|
|
def get_cond_color(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
color = cv2.imread(cond_image) |
|
else: |
|
color = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
color = resize_numpy_image(color, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = color.shape[:2] |
|
if cond_inp_type == 'image': |
|
color = cv2.resize(color, (opt.W//64, opt.H//64), interpolation=cv2.INTER_CUBIC) |
|
color = cv2.resize(color, (opt.W, opt.H), interpolation=cv2.INTER_NEAREST) |
|
color = img2tensor(color).unsqueeze(0) / 255. |
|
color = color.to(opt.device) |
|
return color |
|
|
|
|
|
def get_cond_openpose(opt, cond_image, cond_inp_type='image', cond_model=None): |
|
if isinstance(cond_image, str): |
|
openpose_keypose = cv2.imread(cond_image) |
|
else: |
|
openpose_keypose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) |
|
openpose_keypose = resize_numpy_image( |
|
openpose_keypose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) |
|
opt.H, opt.W = openpose_keypose.shape[:2] |
|
if cond_inp_type == 'openpose': |
|
openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255. |
|
openpose_keypose = openpose_keypose.to(opt.device) |
|
elif cond_inp_type == 'image': |
|
with autocast('cuda', dtype=torch.float32): |
|
openpose_keypose = cond_model(openpose_keypose) |
|
openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255. |
|
openpose_keypose = openpose_keypose.to(opt.device) |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
return openpose_keypose |
|
|
|
|
|
def get_adapter_feature(inputs, adapters): |
|
ret_feat_map = None |
|
ret_feat_seq = None |
|
if not isinstance(inputs, list): |
|
inputs = [inputs] |
|
adapters = [adapters] |
|
|
|
for input, adapter in zip(inputs, adapters): |
|
cur_feature = adapter['model'](input) |
|
if isinstance(cur_feature, list): |
|
if ret_feat_map is None: |
|
ret_feat_map = list(map(lambda x: x * adapter['cond_weight'], cur_feature)) |
|
else: |
|
ret_feat_map = list(map(lambda x, y: x + y * adapter['cond_weight'], ret_feat_map, cur_feature)) |
|
else: |
|
if ret_feat_seq is None: |
|
ret_feat_seq = cur_feature * adapter['cond_weight'] |
|
else: |
|
ret_feat_seq = torch.cat([ret_feat_seq, cur_feature * adapter['cond_weight']], dim=1) |
|
|
|
return ret_feat_map, ret_feat_seq |
|
|