Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
2 |
+
from transformers import MoonshineForConditionalGeneration, AutoProcessor
|
3 |
+
import torch
|
4 |
+
import librosa
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Check for GPU availability
|
11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
13 |
+
|
14 |
+
# Load the model and processor
|
15 |
+
try:
|
16 |
+
model = MoonshineForConditionalGeneration.from_pretrained('UsefulSensors/moonshine-tiny').to(device).to(torch_dtype)
|
17 |
+
processor = AutoProcessor.from_pretrained('UsefulSensors/moonshine-tiny')
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Error loading model or processor: {e}")
|
20 |
+
exit()
|
21 |
+
|
22 |
+
@app.post("/transcribe/")
|
23 |
+
async def transcribe_audio(file: UploadFile = File(...)):
|
24 |
+
"""
|
25 |
+
Transcribes an uploaded audio file.
|
26 |
+
"""
|
27 |
+
if not file.filename.lower().endswith(('.mp3', '.wav', '.ogg', '.flac', '.m4a')): #add more formats as needed
|
28 |
+
raise HTTPException(status_code=400, detail="Invalid file format. Supported formats: .mp3, .wav, .ogg, .flac, .m4a")
|
29 |
+
|
30 |
+
try:
|
31 |
+
audio_bytes = await file.read()
|
32 |
+
audio_array, sampling_rate = librosa.load(io.BytesIO(audio_bytes), sr=processor.feature_extractor.sampling_rate)
|
33 |
+
|
34 |
+
inputs = processor(
|
35 |
+
audio_array,
|
36 |
+
return_tensors="pt",
|
37 |
+
sampling_rate=processor.feature_extractor.sampling_rate
|
38 |
+
)
|
39 |
+
inputs = inputs.to(device, torch_dtype)
|
40 |
+
|
41 |
+
token_limit_factor = 6.5 / processor.feature_extractor.sampling_rate
|
42 |
+
seq_lens = inputs.attention_mask.sum(dim=-1)
|
43 |
+
max_length = int((seq_lens * token_limit_factor).max().item())
|
44 |
+
|
45 |
+
generated_ids = model.generate(**inputs, max_length=max_length)
|
46 |
+
transcription = processor.decode(generated_ids[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
return {"transcription": transcription}
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
raise HTTPException(status_code=500, detail=f"Error processing audio: {e}")
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
import uvicorn
|
55 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|