RohitGandikota
pushing training code
f83a5f5
raw
history blame contribute delete
13.8 kB
from typing import Optional, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UNet2DConditionModel, SchedulerMixin
from trainscripts.textsliders.model_util import SDXL_TEXT_ENCODER_TYPE
from tqdm import tqdm
UNET_IN_CHANNELS = 4 # Stable Diffusion ใฎ in_channels ใฏ 4 ใงๅ›บๅฎšใ€‚XLใ‚‚ๅŒใ˜ใ€‚
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
UNET_ATTENTION_TIME_EMBED_DIM = 256 # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816
def get_random_noise(
batch_size: int, height: int, width: int, generator: torch.Generator = None
) -> torch.Tensor:
return torch.randn(
(
batch_size,
UNET_IN_CHANNELS,
height // VAE_SCALE_FACTOR, # ็ธฆใจๆจชใ“ใ‚Œใงใ‚ใฃใฆใ‚‹ใฎใ‹ใ‚ใ‹ใ‚‰ใชใ„ใ‘ใฉใ€ใฉใฃใกใซใ—ใ‚ๅคงใใชๅ•้กŒใฏ็™บ็”Ÿใ—ใชใ„ใฎใงใ“ใ‚Œใงใ„ใ„ใ‚„
width // VAE_SCALE_FACTOR,
),
generator=generator,
device="cpu",
)
# https://www.crosslabs.org/blog/diffusion-with-offset-noise
def apply_noise_offset(latents: torch.FloatTensor, noise_offset: float):
latents = latents + noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
return latents
def get_initial_latents(
scheduler: SchedulerMixin,
n_imgs: int,
height: int,
width: int,
n_prompts: int,
generator=None,
) -> torch.Tensor:
noise = get_random_noise(n_imgs, height, width, generator=generator).repeat(
n_prompts, 1, 1, 1
)
latents = noise * scheduler.init_noise_sigma
return latents
def text_tokenize(
tokenizer: CLIPTokenizer, # ๆ™ฎ้€šใชใ‚‰ใฒใจใคใ€XLใชใ‚‰ใตใŸใค๏ผ
prompts: list[str],
):
return tokenizer(
prompts,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def text_encode(text_encoder: CLIPTextModel, tokens):
return text_encoder(tokens.to(text_encoder.device))[0]
def encode_prompts(
tokenizer: CLIPTokenizer,
text_encoder: CLIPTokenizer,
prompts: list[str],
):
text_tokens = text_tokenize(tokenizer, prompts)
text_embeddings = text_encode(text_encoder, text_tokens)
return text_embeddings
# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
text_encoder: SDXL_TEXT_ENCODER_TYPE,
tokens: torch.FloatTensor,
num_images_per_prompt: int = 1,
):
prompt_embeds = text_encoder(
tokens.to(text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2] # always penultimate layer
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompts_xl(
tokenizers: list[CLIPTokenizer],
text_encoders: list[SDXL_TEXT_ENCODER_TYPE],
prompts: list[str],
num_images_per_prompt: int = 1,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
# text_encoder and text_encoder_2's penuultimate layer's output
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_tokens_input_ids = text_tokenize(tokenizer, prompts)
text_embeds, pooled_text_embeds = text_encode_xl(
text_encoder, text_tokens_input_ids, num_images_per_prompt
)
text_embeds_list.append(text_embeds)
bs_embed = pooled_text_embeds.shape[0]
pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds
def concat_embeddings(
unconditional: torch.FloatTensor,
conditional: torch.FloatTensor,
n_imgs: int,
):
return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L721
def predict_noise(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # ็พๅœจใฎใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond ใช text embed ใจ cond ใช text embed ใ‚’็ตๅˆใ—ใŸใ‚‚ใฎ
guidance_scale=7.5,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return guided_target
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
@torch.no_grad()
def diffusion(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ใŸใ ใฎใƒŽใ‚คใ‚บใ ใ‘ใฎlatents
text_embeddings: torch.FloatTensor,
total_timesteps: int = 1000,
start_timesteps=0,
**kwargs,
):
# latents_steps = []
for timestep in tqdm(scheduler.timesteps[start_timesteps:total_timesteps]):
noise_pred = predict_noise(
unet, scheduler, timestep, latents, text_embeddings, **kwargs
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
def rescale_noise_cfg(
noise_cfg: torch.FloatTensor, noise_pred_text, guidance_rescale=0.0
):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
)
return noise_cfg
def predict_noise_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # ็พๅœจใฎใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond ใช text embed ใจ cond ใช text embed ใ‚’็ตๅˆใ—ใŸใ‚‚ใฎ
add_text_embeddings: torch.FloatTensor, # pooled ใชใ‚„ใค
add_time_ids: torch.FloatTensor,
guidance_scale=7.5,
guidance_rescale=0.7,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
"text_embeds": add_text_embeddings,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
)
return guided_target
@torch.no_grad()
def diffusion_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ใŸใ ใฎใƒŽใ‚คใ‚บใ ใ‘ใฎlatents
text_embeddings: tuple[torch.FloatTensor, torch.FloatTensor],
add_text_embeddings: torch.FloatTensor, # pooled ใชใ‚„ใค
add_time_ids: torch.FloatTensor,
guidance_scale: float = 1.0,
total_timesteps: int = 1000,
start_timesteps=0,
):
# latents_steps = []
for timestep in tqdm(scheduler.timesteps[start_timesteps:total_timesteps]):
noise_pred = predict_noise_xl(
unet,
scheduler,
timestep,
latents,
text_embeddings,
add_text_embeddings,
add_time_ids,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
# for XL
def get_add_time_ids(
height: int,
width: int,
dynamic_crops: bool = False,
dtype: torch.dtype = torch.float32,
):
if dynamic_crops:
# random float scale between 1 and 3
random_scale = torch.rand(1).item() * 2 + 1
original_size = (int(height * random_scale), int(width * random_scale))
# random position
crops_coords_top_left = (
torch.randint(0, original_size[0] - height, (1,)).item(),
torch.randint(0, original_size[1] - width, (1,)).item(),
)
target_size = (height, width)
else:
original_size = (height, width)
crops_coords_top_left = (0, 0)
target_size = (height, width)
# this is expected as 6
add_time_ids = list(original_size + crops_coords_top_left + target_size)
# this is expected as 2816
passed_add_embed_dim = (
UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids) # 256 * 6
+ TEXT_ENCODER_2_PROJECTION_DIM # + 1280
)
if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
raise ValueError(
f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def get_optimizer(name: str):
name = name.lower()
if name.startswith("dadapt"):
import dadaptation
if name == "dadaptadam":
return dadaptation.DAdaptAdam
elif name == "dadaptlion":
return dadaptation.DAdaptLion
else:
raise ValueError("DAdapt optimizer must be dadaptadam or dadaptlion")
elif name.endswith("8bit"): # ๆคœ่จผใ—ใฆใชใ„
import bitsandbytes as bnb
if name == "adam8bit":
return bnb.optim.Adam8bit
elif name == "lion8bit":
return bnb.optim.Lion8bit
else:
raise ValueError("8bit optimizer must be adam8bit or lion8bit")
else:
if name == "adam":
return torch.optim.Adam
elif name == "adamw":
return torch.optim.AdamW
elif name == "lion":
from lion_pytorch import Lion
return Lion
elif name == "prodigy":
import prodigyopt
return prodigyopt.Prodigy
else:
raise ValueError("Optimizer must be adam, adamw, lion or Prodigy")
def get_lr_scheduler(
name: Optional[str],
optimizer: torch.optim.Optimizer,
max_iterations: Optional[int],
lr_min: Optional[float],
**kwargs,
):
if name == "cosine":
return torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=max_iterations, eta_min=lr_min, **kwargs
)
elif name == "cosine_with_restarts":
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=max_iterations // 10, T_mult=2, eta_min=lr_min, **kwargs
)
elif name == "step":
return torch.optim.lr_scheduler.StepLR(
optimizer, step_size=max_iterations // 100, gamma=0.999, **kwargs
)
elif name == "constant":
return torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1, **kwargs)
elif name == "linear":
return torch.optim.lr_scheduler.LinearLR(
optimizer, factor=0.5, total_iters=max_iterations // 100, **kwargs
)
else:
raise ValueError(
"Scheduler must be cosine, cosine_with_restarts, step, linear or constant"
)
def get_random_resolution_in_bucket(bucket_resolution: int = 512) -> tuple[int, int]:
max_resolution = bucket_resolution
min_resolution = bucket_resolution // 2
step = 64
min_step = min_resolution // step
max_step = max_resolution // step
height = torch.randint(min_step, max_step, (1,)).item() * step
width = torch.randint(min_step, max_step, (1,)).item() * step
return height, width