import torch def validate_sequence(sequence): valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY") # 20 standard amino acids return all(aa in valid_amino_acids for aa in sequence) and len(sequence) <= 200 def load_model(): # Assuming the model is a simple PyTorch model, adjust the path as needed model = torch.load('model.pth', map_location=torch.device('cpu')) model.eval() return model def predict(model, sequence): # Dummy tensor conversion, replace with your actual model's input handling tensor = torch.tensor([ord(char) for char in sequence], dtype=torch.float32) output = model(tensor) return output.item()